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ABSTRACT 
 
 

 The World Wide Web (WWW) has become a major source of easily accessible 

information for students, professionals, researchers and the general public. However, the 

volume of information available through the Web is so overwhelming that it is not 

unusual to get tens of thousands of "hits" when conducting a relatively simple search. 

Most existing search techniques use brute force based on keyword matches to find related 

Web pages. While the enormous speed of search engines improves the efficiency of such 

methods, effectiveness is not improved. 

The objective of this thesis is to construct and test an ontology-based application 

to help users identify the most pertinent keywords for a search.  By navigating ontologies 

that describe domains of interest, users are assisted in finding a relevant set of key terms 

that will aid the search engines in narrowing, widening, or refocusing a Web search.  

Specifically, the thesis develops an ontology-aided Web search assistant prototype to help 

users enhance the relevance and precision of the returned results through the use of a 

context provided by ontologies associated with each search. 
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EXECUTIVE SUMMARY 
 
 

The World Wide Web (WWW) is an easily accessible source of information for 

students, professionals, researchers, as well as the general public.  However, the volume 

of information available through the Web is so overwhelming that it is not unusual to get 

tens of thousands of "hits" when conducting a relatively simple search.  Improving Web 

searches has, therefore, become an important and potentially lucrative area of research 

and development.  Since the current Web lacks embedded semantics which allow 

machines to decipher the true content of the Web pages, as Tim Berners-Lee envisions 

for the “Semantic Web”, most Web search portals use brute force techniques based on 

keyword matches mapped to indexed Web content. While the enormous speed of search 

engines improves the efficiency of such methods, effectiveness is not improved.  

The objective of this thesis is to construct an ontology-based application to help 

users identify the most pertinent keywords for a search.  By navigating ontologies that 

describe domains of interest, users are assisted in expanding the relevant set of key terms 

that will aid the search engines in narrowing or refocusing a Web search.  Specifically, 

the thesis develops an ontology-aided Web search assistant prototype to help users 

enhance the relevance and precision of the returned results through the use of context 

provided by ontologies.  An experiment to measure whether the developed application 

benefits the end user is also conducted as part of this thesis. 

This thesis is organized as follows.  Chapter II is dedicated to understanding the 

semantics and syntax of RDF and OWL.  Although many ontology development tools 

hide the details of OWL syntax, an ontology developer must have a good understanding 

of the language in order to construct a valid ontology.  Chapter III describes the proposed 

methodology for building an ontology.  It details a seven-step approach for developing 

OWL based ontologies.  A geography domain is used to illustrate OWL constructs and 

for developing a complete geography ontology for use in the OAKDA application.  

Chapter IV discusses the use of onotologies as knowledge bases in the OAKDA 

application.  It specifically describes three example scenarios of using ontologies to 



 

 xx

discover domain knowledge and create intelligent Web searches.  Chapter V details the 

architecture and construction of the OAKDA application.  This chapter describes in detail 

the components used to build the prototype application and how they communicate with 

each other within the architecture of OAKDA.  Chapter 6 tests the main thesis research 

question: Can an ontology-based Web search application increase the effectiveness of 

Web search results over existing approaches for those searches that require a deep 

contextual knowledge of the domain of interest?  The experiment compares the 

effectiveness of the results of Web search queries formulated by study participants using 

the OAKDA application with those obtained by the same participants using the widely 

popular Google search engine.  The results show that OAKDA and the ontologies which 

it implements have a statistically significant positive effect on the precision of web search 

queries generated by the participants in the experiment.  Finally Chapter 7 concludes the 

thesis by summarizing our effort to develop a tool to help users improve their Web 

searches.  The chapter discusses the application's effectiveness, the lessons learned, and 

possible future enhancements. 

 

 



 

 1

I. INTRODUCTION 

A. BACKGROUND 
The World Wide Web (WWW) is an easily accessible source of information for 

students, professionals, researchers, as well as the general public.  However, the volume 

of information available through the Web is so overwhelming that it is not unusual to get 

tens of thousands of "hits" when conducting a relatively simple search. Improving Web 

searches has, therefore, become an important and potentially lucrative area of research 

and development.  Since the current Web lacks, for the most part, embedded semantics 

which allows machines to decipher the true content of the Web pages, as Tim Berners-

Lee envisions for the “Semantic Web”, most existing search techniques must use brute 

force based on keyword matches to find related Web pages. While the enormous speed of 

search engines improves the efficiency of such methods, effectiveness is not improved.  

 We define an effective search as one returning to the user a manageable set of 

highly relevant results.  More formally, an effective search returns a results set with a 

high degree of “aboutness.”  Aboutness is broadly defined as a degree in which a set of 

returned resources is “about” a particular domain of interest.  For instance, “if a system 

determines that a document d is topically related (i.e. about) to query q, then the 

document is returned to the user.” [Bruza et al., 2000, 1]  Unfortunately, the current 

technology’s inability to identify the true context of Web sites makes it difficult to 

determine the aboutness of any resource.  However, the aboutness of Web search results 

can be improved if there is an appropriate set of search terms that narrows the query 

match results to the most relevant sets of domain resources. 

Broad keywords or one-word searches will often result in a large number of hits, 

many of them irrelevant.  Conversely, using the appropriate keyword(s) will result in 

high degree of aboutness in the returned set, therefore resulting in a highly effective 

search.  In order to take advantage of currently available search engines to return user-

specific relevant results, an intelligently crafted list of keywords and phrases needs to be 

formed.  To develop such a list, it is necessary to have sufficient knowledge of the 

domain of context.  Unless the user is a subject matter expert, finding the relevant and 
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related terms of a domain may be difficult or even erroneous.  An ontology, which is 

model of a domain of context, can fill the role of a domain expert and support the 

identification of precise and relevant keywords. 

 

B. OBJECTIVES 
As discussed, an effective means for obtaining more effective Web search results 

is to have a comprehensive understanding or knowledge of the context of the search 

term(s).  The availability of a domain knowledge in conjunction with the search terms 

would be extremely useful for determining an appropriate set of search terms, thus 

retrieving the most appropriate Web resources.  In order to gain contextual knowledge, 

ontologies, defined as "specification of conceptualization," [Gruber, 1993, 1] can be 

mined to discover relevant information about the domain of interest.  Specifically, this 

thesis refers to an ontology as a system of knowledge representation that allows machines 

and humans to understand the definitions of concepts and the relationships between them.  

The authors propose ontologies as an appropriate knowledge representation system that 

can be used to create search queries with a greater aboutness value.   

The objective of this thesis is to construct an ontology-based application to help 

users identify the most pertinent keywords for a search.  By navigating ontologies that 

describe domains of interest, users are assisted in finding a relevant set of key terms that 

will aid the search engines in narrowing, widening, or refocusing a Web search.  

Specifically, the thesis develops an ontology-aided Web search assistant prototype to help 

users enhance the relevance and precision of the returned results through the use of a 

context provided by ontologies associated with each search. 

 

C.  THE RESEARCH QUESTION 

The primary research question of this thesis is: Can an ontology-based 

application be built to narrow, expand, refine and increase precision of Web search 

terms?  In order the address the primary question, the thesis will also address several 

secondary questions.  First, what is an appropriate approach for accessing and 

processing of contextual information of an OWL knowledge base? Second, what is the 
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most appropriate architecture for the prototype application?  Third, how can an ontology 

inference engine interface with the application?  Last, is there a method of visually 

rendering the ontologies for greater usability, navigation and comprehension of domain 

knowledge? 

The ability to answer these questions will depend largely on finding and determining the 

necessary software components and building the interface capabilities between them.  

The challenge will be to learn the necessary technologies and skills to develop the most 

appropriate architecture and implementation. 

 

D. SCOPE, LIMITATIONS AND ASSUMPTIONS 
The scope of this thesis is to research and understand ontologies, their 

development languages and methodologies, build, and test an ontology-based Web 

application that aids users in designing search term lists.  While the realization of the 

Semantic Web would allow search engines or agents to process all Web resources based 

on their content rather than as string of characters, this vision requires redevelopment of 

all Web sites currently available.  The application proposes an interim solution for Web 

search by employing ontologies as its knowledge system for discovery and search results 

enhancement using current Web technologies. 

The success of the application is contingent on the availability and reliability of 

ontologies for domain knowledge representation.  Although at the time of this thesis, 

libraries of ontologies are still limited, the prevalence and popularity of ontologies is 

growing in various fields, both in academia and commerce.  It is the authors' belief that 

applications, such as the one developed here, further encourage the growth and validity of 

ontologies and suggest a usable architecture for building applications which operate in 

this milieu. 

It is assumed that the readers have a working knowledge of HTML and XML, as 

well as have a general understanding of software systems.  Readers are also assumed to 

be familiar with Web search engines, such as Google and Yahoo!, and how Web search is 

performed using one or more terms.  Furthermore, it is the authors' argument that 
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ontologies' contextual domain knowledge provides the user with a selection of domain-

relevant search terms which narrows and improves the search results.   

 

E. METHODOLOGY 
The methodology used in the development of this thesis consists of two parts.  

The first part is dedicated to the research and understanding of ontologies, languages, and 

methodologies for ontology development.  This is achieved by first understanding and 

mastering existing semantic languages for the Web, namely Resource Description 

Framework (RDF) and Web Ontology Language (OWL).  Second, a review of literature 

on ontologies is conducted, within and outside the vision of the Semantic Web, 

emphasizing their important contribution to knowledge representation in information 

technology.  Third, existing development methodologies are adapted to construct OWL 

ontologies, and a seven-step methodology for constructing valid OWL ontologies is 

proposed.  Fourth, a sample ontology is built to demonstrate the semantics of RDF and 

OWL, as well as the proposed ontology development methodology.  Last, examples are 

demonstrated to show how ontologies can be used to discover knowledge and aid the 

construction of relevant search terms. 

The second part of the methodology used in this thesis is related to the 

development of the prototype Ontology Aided Knowledge Discovery Assistant 

(OAKDA), pronounced "Oak D-A", application that will assist users with discovering 

domain knowledge and designing their Web search terms for the most relevant results.  It 

is best described as a prototype software development methodology.  First, a multi-tier 

architecture is designed for the application.  Second, a reasoning engine is incorporated, 

using TCP/IP interface model, to inference ontologies.  Third, ontology concepts and 

relationships are graphically displayed and can be traversed in any direction.  Last, a user 

function to select relevant terms from the ontology and build a search term list is 

constructed and used to query the Google Web search portal and return matched results.  

In order to test the research question, this thesis will also examine whether ontology-

aided Web searches perform better than those relying only on a search engines such as 

Google.  While it is difficult to measure the accuracy or aboutness of search results, the 
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research design will measure the answer precision and content-relatedness of the returned 

Web pages of the test questions in order to determine the performance of the ontology-

aided search tool developed in this thesis. 

 

F. ORGANIZATION OF THE STUDY 
This thesis is organized as follows.  Chapter II is dedicated to understanding the 

semantics and syntax of RDF and OWL.  Although many ontology development tools 

hide the details of OWL syntax, an ontology developer must have a good understanding 

of the language in order to construct a valid ontology.  Chapter 3 describes the proposed 

methodology of building an ontology.  It details a seven-step approach for developing an 

OWL ontology.  A geography domain is used to illustrate OWL constructs and for 

developing a complete geography ontology for use in the OAKDA application.  Chapter 

4 discusses the use of ontologies as knowledge bases in the OAKDA application.  It 

specifically describes three example scenarios of using ontologies to discover domain 

knowledge and create intelligent Web searches.  Chapter 5 details the architecture and 

construction of the OAKDA application.  This chapter describe in detail the components 

used to build the prototype application and how they communicate with each other within 

the architecture of OAKDA.  Chapter 6 tests the thesis research question by comparing 

the precision and content-relatedness of the ontology-aided searches to those performed 

solely by search engines.  Finally Chapter 7 concludes the thesis by summarizing our 

effort to develop a tool to help users improve their Web searches.  The chapter discusses 

the application's effectiveness, the lessons learned, and possible future enhancements to 

the application. 
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II. RDF AND OWL ONTOLOGIES OVERVIEW 

A. INTRODUCTION 
An ontology can be defined as a formal explicit description of concepts in a 

domain of discourse, properties of each concept describing various features and attributes 

of the concept, and restrictions on these properties that are specified by semantics, or 

rules, that follows the “rules” of the domain of knowledge.  For these reasons, ontologies 

are useful as knowledge bases (KB) for an application attempting to add context to a 

particular search word or phrase.  By navigating the ontologies, we can understand the 

context of a particular concept as well as the relationships it has with other concepts.   

This chapter focuses on the syntax and construct of ontology languages.  The 

World Wide Web Consortium (W3C) has created a language specifically for ontologies, 

known as the Web Ontology Language (OWL), built upon previous Web languages 

including the syntactic foundation of the Web, XML, and Resource Description 

Framework (RDF)1.  OWL is considered an extension of RDF, and as it will be evident in 

the discussion below, OWL ontologies use RDF syntax to define their resources.   

The importance of RDF and, in particular, OWL to building ontologies is the 

ability to add semantics around their concepts that is not possible with XML.  XML 

provides meta data to describe the content of its documents.  However, the description 

alone does not explain anything about the relationship of the content; it is void of 

semantics.  The goal of using ontologies is to move beyond the meta data to a more 

semantically aware systems.  RDF helps to accomplish this by providing a mechanism for 

creating meta data about resources on the Web, i.e., any information that can be retrieved 

or simply identified on the Web.  RDF was developed for processing information by 

applications, rather than simply displaying it for humans.  It creates a common 

framework for exchanging information across application without losing any of their 

meanings.  However, RDF does not provide much capability for semantics, leading to the 

                                                 
1 For the purpose of this thesis, a working knowledge of XML will be assumed.  While certain 

components of XML will be defined, detailed explanation of the syntax will not be discussed.  



 

 8

development of OWL.2  OWL is able to extend RDF with its semantic constructs, 

allowing it to define and instantiate concepts and their relationships within an ontology.   

Tim Berners-Lee’s vision of the Semantic Web is to move beyond the mere data 

presentation and meta data using HTML and XML, respectively.  He argues that in order 

for the Semantic Web to work, systems need to have access to structured information 

along with a set of inference “rules” for processing automated reasoning [Berners-Lee et 

al., 2001, 2].  Berners-Lee proposed a layered architecture for the Semantic Web as 

represented in Figure 1.   As the figure shows, newer technologies stack on top of 

previous ones to achieve the realization of the Semantic Web.  OWL was not part of the 

original stack because it was in its infant stages when Berners-Lee proposed the 

architecture.  However, as Figure 1 shows, OWL fits naturally between the RDF and 

Ontology layers. 

Figure 1. The Semantic Web Layers 
 

At the bottom of the stack are the simplest forms of web identifiers, the Uniform 

Resource Identifier (URI) and Unicode.  URI provides a means for resources to be 

                                                 
2 OWL was derived from an earlier ontology language developed by DARPA called DAML+OIL.  

More information on DAML+OIL can be found on www.w3.org/TR/daml+oil-reference, April 2005. 
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uniquely identified and retrieved on the web.  Unicode is an extension of ASCII that has 

the ability to encode the characters of all languages, rather than only the Roman alphabet.   

The second layer is made up of XML and namespaces.  XML is a set of syntax 

rules for structured documents.  However, it does not enforce any semantic constraints on 

the documents.  Namespaces are extensions of XML and they are a mechanism for 

differentiating elements and attributes of a particular vocabulary in order to make them 

globally unique.  Namespaces allow different XML documents to be combined without 

ambiguity.   

The third layer of the stack is XML query (XQuery) and XML schema.  As the 

name implies XQuery is a query language for XML documents.  XQuery was designed to 

query XML-based data sources as one would do to databases.  XML Schema is a 

definition language that limits the conforming XML documents to a specific vocabulary 

and hierarchical structure.  The fourth layer consists of RDF model and syntax.  RDF is 

an XML-based language used to describe objects or “resources,” as well as the 

relationship between them.  This provides a data-model, known as RDF Triple, using 

simple semantics and the resources are accessed using URIs.  RDF Schema is a language 

that describes RDF classes and properties, with semantics that specify the hierarchies of 

these classes and properties.   

The fifth layer is the ontology itself.  Ontologies are the key components to the 

Semantic Web because they contain the domain “knowledge” that defines concepts and 

their relationships to each other.  Although RDF does have some capabilities to represent 

relationship between resources, it lacks the semantic richness and inference capacity that 

the OWL provides.  OWL is built on RDF, adding greater vocabulary for specifying 

relationships between classes, individuals, property characteristics, and enumerated 

classes, that allows for developing rich ontologies.   

The next two layers, Rules/Query and Logic provide mechanisms for querying 

and inferencing to provide information about the domain of interest.  Although 

description logic of OWL lacks full expressiveness, it does have computational 

completeness, which is not possible with RDF.   
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Little is currently understood about the top two layers of the Semantic Web stack, 

the Proof and Trust, but they are expected to be the focus of future development efforts.  

The idea behind Proof and Trust is that when information is retrieved from the Semantic 

Web, it must be proven and trusted as the right answer.  For instance, if one source states 

that the country of Armenia is in the continent of Europe and another source states that it 

is in the continent of Asia, which source should be trusted?  These inconsistencies would 

make it impossible for the success of the Semantic Web.  However, as the focus shifts to 

proof checking mechanisms and digital signatures, these layers will provide a step closer 

to Berners-Lee’s goal for the next generation of the Web [Palmer, 2001, 11]. 

   The remainder of this chapter addresses the syntax and constructs of RDF and 

OWL.  It is organized as follows.  Section B is a brief overview of RDF while section C 

discusses the syntax and constructs of OWL.   

 

B. RDF PRIMER 
RDF was developed to represent information about Web resources.  The term 

“resource,” which has a broad meaning, can be simply thought of as the electronic file 

available out on the Web [Daconta et al., 2003, 12].  Rather than just displaying 

information for human consumption, the RDF was developed to allow machines and 

applications to process information.  Such an exchange of information is possible with 

the RDF common framework, which uses parsers and data processing mechanisms.  The 

RDF capabilities to uniquely identify resources and share information across all 

platforms lay the core foundation for semantically richer languages, such as OWL.   

1. RDF Triple 
There are three necessary RDF components for identifying a piece of information.  

Known as the RDF triple, it consists of subject, predicate, and object.  Consider a 

common English statement below. 

http://www.ontology.net/geography.html has a creator whose value is Ann Lee.  

The above statement is broken down into the RDF triple elements as follows.  
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1. SUBJECT: http://www.ontology.net/geography.html 
2. PREDICATE: creator  
3. OBJECT: Ann Lee  

In order for machines to understand the meaning or “knowledge” of this statement, the 

components of the English sentence must be formatted in such a way that they are 

machine-consumable.  RDF accomplishes this by using what the URI references 

(URIrefs).  URIrefs are RDF’s primary mechanism for specifying subject, predicate and 

object in its statements.  An URIref has two parts, namely an URI joined with a fragment 

identifier.  For example, http://www.ontology.net/geography.html#Country is a 

combination of the URI http://www.ontology.net/geography.html and the fragment 

identifier Country separated by the # sign.  Unlike Uniform Resource Locators (URLs), 

URIrefs do not require direct connection to an actual Web resource.   

The RDF triples are often depicted as a graph using nodes and arcs.  For example, 

the English statement above is represented by the graph shown in Figure 2. 

 

 
Figure 2. RDF Triple Model 

 

As the figure shows, the subject and object are represented by nodes, and the predicate by 

an arc from the subject to the object node.  Also, the predicate and object are specified by 

an URIref, rather than simple values of “creator” and “Ann Lee”, as in the English 

statement above.  The URIrefs uniquely associates any property or value to a particular 

resource identifier.  That is, the usage of the property “creator” may have different 

meanings for different developers or applications.  In order to clarify the exact meaning 

of “creator” as implied by the developer, the term is associated with an URIref to make 

the description unambiguous to the user.  Therefore, depicting the predicate as 

http://purl.org/dc/elements/1.1/creator 

http://www.ontology.net/geography.html 

http://www.ontology.net/staffid/12345 
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“http://purl.org/dc/elements/1.1/creator” helps distinguish it from other meanings of 

“creator,” such as the one with resource of “http://www.anotheruser.org/term/creator.”  

Furthermore, the use of URIref to identify the property makes it possible to augment 

additional information.  For example, the object URIref of a particular RDF statement 

may be used as a subject of another RDF statement.   

It is important to understand that one resource may be part of several RDF 

statements.  Consider the diagram below.   

 
 
 
 
 
 
 
 
 
 

Figure 3. Multiple RDF Statements Interconnected 
 

Figure 3 illustrates how multiple statements interconnect with one another, and provide 

multiple layers of information for a given node.  Each arc corresponds with a RDF triple.  

Thus, Figure 3 represents four separate RDF triple statements.  Also, even though literals 

may not be used as subjects or predicates, objects may take on a constant value. The node 

http://www.testsite.net/pic.jpeg, representing a picture file, has for its creation date the 

literal value of “February 10, 2005.” 

Like XML, RDF uses namespaces to abbreviate for URIs.  For example, the 

prefix myont is the namespace representation for the URI 

http://www.ontology.net/geography#.  Future references to this resource, then, may be 

written as myont:, followed by the fragment identifier such as myont:Country.  

Some common namespace prefixes are as listed in Table 1.  

 
 
 
 
 

http://somesite.org/conta

http://purl.org/dc/elements/1.1/cre

http://purl.org/dc/elements/1.1/cre

http://www.ontology.net/geography.

http://www.ontology.net/staffid/123

http://somesite.org/creationD

http://www.testsite.net/pic.jp

February 10, 2005 
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Prefix URI 
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#  
rdfs: http://www.w3.org/2000/01/rdf-schema#  
dc: http://purl.org/dc/elements/1.1/  
owl: http://www.w3.org/2002/07/owl#  
xsd: http://www.w3.org/2001/XMLSchema#  

Table 1. List of Common Namespaces 
 

Within the RDF namespace, there are defined constructs that denote different 

relationship semantics.  For instance, the property rdf:type is used to define the 

various kinds of relationships that exist between resources.  This is especially useful with 

RDF Schema specification vocabularies of Class and subClassOf, where 

rdf:type is analogous to the instanceOf property in object-oriented languages.  

RDF constructs, such as rdf:type, will be discussed further in the sections below.   

2. RDF Schema 
RDF Schema, the semantic extension of RDF, allows for the development of an 

application-neutral vocabulary for defining class and subclass hierarchies, as well as 

properties to describe these classes.  Unlike object-oriented languages that RDF Schema 

is often compared to, the RDF vocabulary defines properties in terms of resource classes.  

That is, one can create new properties out of existing ones simply by adding to the 

original property specifications without redefining the original description and 

restrictions of the class.  This is the benefit of RDF Schema's property-centricity, having 

the ability to extend the existing resource descriptions.    

The facilities of RDF Schema are predefined with its own set of RDF vocabulary 

under the resource, http://www.w3.org/2000/01/rdf-schema#.  The vocabulary may be 

referenced using the rdfs namespace as specified above.  The RDF examples below will 

use the rdfs and rdf (URI: http://www.w3.org/1999/02/22-rdf-syntax-ns#) 

namespaces.    

3. Classes 
RDF Schema categorizes similar “kinds of things” into classes.  Syntactically, a 

class in RDF Schema is any resource that has the rdf:type property value of 

rdfs:class.  The members of a class, known as instances, are also known as class 
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extensions.  Multiple classes may have the same set of instance, which have all sets of 

properties from each class.  Furthermore, a class may be defined by a set of its own 

extensions and/or extensions of other classes.   

A Subclass is a child class, which inherits all the characteristics from its parent 

classes.  If class B is a subclass of class A, then all the instances of B are also instances of 

A.  The superclass-subclass relationship is called an "is-a" relationship, meaning an 

instance of class B is also an instance of class A.  If class C is also a subclass of class A, 

then class C is a sibling class to class B.  They share all the same traits inherited from 

class A, along with their unique properties that differentiate them.  The syntax 

rdfs:subClassOf is used to define a subclass.  Table 2 lists class relevant RDF 

constructs.   

RDF Construct Description 
rdf:type Specifies that a given resource is an instance of some class. 
rdfs:subClassOf Specifies that all the instances of one class are also instances 

of another class. 
rdfs:label Used to provide human-readable names for the resources. 
rdfs:comment Used to provide human-readable descriptions of the 

resources. 
Table 2. RDF Class Constructs 

 
4 Properties 
RDF property is the predicate relationship between the subject and object 

resources.  All RDF properties have the rdf:type value of rdfs:Property.  Like 

classes, properties are arranged in hierarchies where rdfs:subPropertyOf construct 

denotes a taxonomic, superclass-subclass relationship.  Thus, if the property Y is a 

subproperty of X, then all resources related to property Y are also related to property X.  

There are three RDF Schema syntax used to define properties.  The range of a property, 

specified by rdfs:range, indicates the property’s allowed set of values.  The 

property’s domain, rdfs:domain, is used to show that the property is applied to a 

designated class or set of classes.  These property semantics, further defined in Table 3,  

are used to describe RDF properties.   
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RDF Construct Description 
rdfs:subPropertyOf Specifies that all the properties are also subproperties of 

another property. 
rdfs:range Specifies the class instance or a literal that a given property 

must take one as its value. 
rdfs:domain Specifies the class that “owns” the property.  That is, it 

associates the property with the class it modifies and 
asserts that the subjects of such property statements must 
belong to the instance of the class. 

Table 3. RDF Property Constructs 
 

5. Other RDF Vocabularies 
RDF containers are predefined syntax used to represent collections of resources.  

There are three container vocabularies in RDF Schema, namely rdf:Bag, rdf:Seq, 

and rdf:Alt, which are specified under the class rdfs:Container.  The bag 

(rdf:Bag) defines a group of resources or literals where the order of its members is not 

significant.  The sequence (rdf:Seq) is a group resources or literals where the order of 

them are, in fact, relevant, whether it is alphabetical, numeric, or other types of ordering.  

The alternative (rdf:Alt) is a group of resources or literals that are “alternatives” to 

the other containers.  That is, all the members are alternates of one another.  All the 

containers described above allow duplicate members in its list. 

RDF collection differs from the RDF containers in that it is a closed list.  In other 

words, it is an exhaustive list of members, exclusive to other possible candidates.  In 

specifying the RDF collection, the syntax rdf:List describes the list while 

rdf:first property refers to the first-member relationship and rdf:rest property 

refers to the rest-of-list relationship.   

Putting all the RDF Schema vocabularies together, here is an example of an RDF 

document in Figure 4. 
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Figure 4. Sample RDF Statement 
 

The RDF statement in Figure 4 defines both classes and properties.  The classes are 

River and Stream identified by the rdf:ID syntax, where River is a subclass of 

Stream and Stream is a subclass of NatuallyOccurringWaterSource, which 

is defined elsewhere in the RDF document.  Also, there are two properties, 

emptiesInto and hasLength, specified by rdf:ID.  While both properties have a 

domain value of class River, the range of emptiesInto is the BodyOfWater class 

and the range of hasLength is a literal string.  Thus, instances of River having these 

properties must select an instance of BodyOfWater as the value for emptiesInto 

property and a literal string for the value of hasLength property.   

Although RDF provides certain semantics for knowledge representation for 

systems, it still lacks the semantic richness for creating meaningful ontologies and 

capability for inferences.  To this end OWL was developed to address the semantic 

limitations of RDF.  

<?xml version=”1.0”?> 
<rdf:RDF xmlns:rdf=http://www.w3.org/1999/02/22-rdf-syntax-ns# 
         xmlns:rdfs=http://www/w3/org/2000/01/rdf-schema# 
         xml:base=http://www/geodesy.org/water/naturally-occurring> 
 
<rdfs:Class rdf:ID=”River”> 
   <rdfs:subClassOf rdf:resource=”#Stream”/> 
</rdfs:Class> 
 
<rdfs:Class rdf:ID=”Stream”> 
   <rdfs:subClassOf rdf:resource=”#NaturallyOccurringWaterSource”/> 
</rdfs:Class> 
 
<rdf:Property rdf:ID=”emptiesInto”> 
   <rdfs:domain rdf:resource=”#River”/> 
   <rdfs:range rdf:resource=”#BodyOfWater”/> 
</rdfs:Property> 

 
<rdf:Property rdf:ID=”hasLength”> 
   <rdfs:domain rdf:resource=”#River”/> 
   <rdfs:range rdf:resource=”http://www.w3.org/2000/01/rdf-  
    schema#Literal”/> 
</rdfs:Property> 
… 
</rdf:RDF> 
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C. WEB ONTOLOGY LANGUAGE (OWL): BUILDING AN ONTOLOGY 
OWL builds on RDF and RDF Schema, with enhanced capability to describe 

classes and properties.  Like RDF, OWL uses URIs and description framework for a wide 

distribution across systems, necessary scalability for the web, compatible Web standards, 

extensibility and openness.  OWL’s rich semantics provide better interpretability than 

XML, RDF, and RDF Schema, making it ideal as a platform independent, machine-

process language.  OWL is the most appropriate language available to express explicitly 

the meaning of terms in a domain as well as relationships between them.     

There are three OWL sublanguages, namely OWL Lite, OWL DL, and OWL Full, 

in increasingly expressive sequence.   

OWL Lite, the least expressive of the sublanguage, is used primarily to support 

classification hierarchy and simple restriction features.  And, while OWL Lite allows 

cardinality restrictions, it is limited to the values of 0 and 1.  This sublanguage is an ideal 

choice for developing quick and simple taxonomies.   

OWL-DL supports maximum expressiveness while maintaining the reasoning 

system’s computational completeness and decidability.  In other words, all inferences are 

guaranteed for computation and these computations will be completed in a finite amount 

of time.  With some exceptions, such as type separation3, OWL-DL includes all 

constructs of the OWL language and it is derived from its conformity to description 

logic.  OWL-DL was specifically designed to allow logic inferencing and has ideal 

reasoning system computational properties. 

OWL Full allows maximum expressiveness and full capability of the RDF syntax 

without the computational guarantees.  An OWL Full class may be treated as an 

individual and a collection of individuals simultaneously.  Also, OWL Full permits an 

ontology to add meanings of pre-defined (RDF or OWL) vocabularies.  However, most 

reasoning application do not support all the features of OWL Full in order to maintain its 

computation decidability and completeness. 

                                                 
3 This is when class cannot take on the role of an individual or property; or, property cannot take on 

the role of a class or individual. 
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When choosing the most appropriate OWL ontology sublanguage, developers 

should evaluate the usage of the ontology.  The need for expressiveness and 

computational simplicity usually determines the choice between OWL Lite and OWL 

DL.  Meanwhile, the choice between OWL DL and OWL Full depends on the need for 

RDF Schema’s meta-modeling facilities.  However, the developer should understand the 

trade-off between greater flexibility and reasoning capability when choosing the right 

sublanguage of OWL. 

For the purposes of this thesis and the Ontology Aided Knowledge Discovery 

Assistant (OAKDA) application developed in this thesis, OWL-DL will be the designated 

sublanguage.  Its computational completeness and decidability are crucial to the ontology 

development and use for the OAKDA application.  However, most of the OWL class 

syntax and constructs discussed below applies to all sublanguages of OWL.  It is in the 

description of OWL properties, restrictions, and complex classes where the focus will 

shift to OWL-DL.  Unless specified otherwise, reference to OWL should be assumed to 

mean OWL-DL. 

Throughout this chapter and the next, many examples will be used to illustrate the 

syntax, constructs and methodology for building ontologies.  The goal at the end of these 

two chapters is to develop a sample ontology that will be used in the OAKDA 

application.  For the purpose of this thesis, the authors chose geography as the ontology 

domain of context.  The main motivation is its familiarity and a relatively high general 

interest in the topic by many readers.   

Numerous GUI based ontology editors exist for developing ontologies.  These 

editors simplify ontology development by generating the OWL code from the graphical 

specification.  In particular, Protégé4 is an ontology editor that ontology developers can 

use without the knowledge of the syntax and constructs of OWL.  Although Protégé does 

hide the details of OWL, it is crucial for all OWL-DL ontology developers to understand 

the constructs and semantics of OWL.  Protégé will be used and referenced throughout 

this thesis to illustrate and visually display examples of the Geography OWL ontology.  
                                                 

4 Protégé is an open-source application developed at Stanford University.  More information is 
available at http://protege.stanford.edu/index.html, May 2004. 
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1. Namespaces and Ontology Headers 
In developing an OWL ontology, it is typical to begin the document by stating the 

set of vocabularies that will be used throughout the ontology.  This is done by declaring 

namespaces.  Figure 5 shows namespace declarations for the Geography ontology.   

 
 
 
 
 
 
 

Figure 5. Sample Namespace Declaration 
 

The first is the default namespace, referring to the Geography ontology itself.  

The next three namespaces are W3C’s predefined vocabularies.  While the OWL 

constructs are defined under http://www.w3.org/2002/07/owl, and since OWL is built on 

RDF, RDF Schema, and XML Schema, all three URLs are listed as necessary 

namespaces for building an OWL ontology.  

Once the namespaces are listed, a set of assertions for the ontology can be 

grouped under the tag, owl:Ontology.  This is the place to list the meta-data 

information about the ontology.  Table 4 shows meta data constructs commonly used 

under the owl:Ontology heading. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

<rdf:RDF 
    xmlns=”http://a.com/ontology/Geography#” 
    xmlns:protege="http://protege.stanford.edu/plugins/owl/protege#" 
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
    xmlns:rdfs=”http://www.w3.org/2000/01/rdf-schema#” 
    xmlns:xsd=”http://www.w3.org/2000/10/XMLSchema#” 
    xmlns:owl=”http://www.w3.org/2002/07/owl#”> 
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Construct Description 
rdf:about Specifies a name or reference of the ontology.  If 

the value of “”, then the default value is the base 
URI which contains the ontology. 

rdfs:comment Provides a place for comments and annotations 
regarding the ontology. 

owl:priorVersion Provides a capability for a version control system. 
owl:imports Allows importing of other ontologies, with all of 

their assertions, in the current ontology.  This 
should be used in coordination with the 
namespace, which allows the references to the 
imported ontologies. 

owl:AnnotationProperty Provides to declare properties that are used as 
annotations. 

rdfs:label Allows natural language labels for the ontology. 
Table 4. Meta Data Constructs 

 

Example of these meta data constructs is demonstrated in the OWL statement in Figure 6. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Example OWL Meta Data 
 

2. Basic Components of OWL 
The basic components of OWL are classes, properties, individuals, and the 

relationship between the individuals.  These components are discussed in detail in the 

following sections. 

In OWL, classes may be defined in a variety of ways.  Class description, as 

termed by the W3C, allows six methods for describing a class: 

 

  <owl:Ontology rdf:about=""> 
    <rdfs:comment>An example OWL ontology</rdfs:comment> 
    <owl:priorVersion> 
      <owl:Ontology rdf:about="  
       http://a.com/ontology/02102004/Geography"/> 
    </owl:priorVersion> 
    <owl:imports  
     rdf:resource="http://www/geodesy.org/water/naturally-   
     occurring"/> 
    <rdfs:comment>Developed as part of the OWL Ontology Development  
     Tutorial by Ann Lee and Edward Powers. 
    </rdfs:comment> 
    <rdfs:label>Geography Ontology</rdfs:label> 
  </owl:Ontology> 
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1. A class identifier (URI reference) 
2. A complete list of individuals that combined to form instances of a class 

(enumeration) 
3. A property restriction 
4. An intersection of two or more class descriptions 
5. An union of two or more class descriptions 
6. A complement of a class description 

The six types of class definition will be discussed in detail in the sections below.  

3. Defining OWL Classes 
Similar to RDF, the most basic component of OWL is the class.  In creating an 

ontology, classes are the mechanism for abstracting groups of resources that share similar 

characteristics.  An OWL class is associated with a set of individuals, known as the class 

extension, which are instances of the class.  It is crucial to distinguish between a class and 

its class extension.  Although they are related to each other, they are not equal.  Thus, two 

different classes can have the same instances without conflict.  Those instances will have 

characteristics of both classes.   

The most straightforward method of defining a class is by specifying a name, 

represented syntactically using an URI.  All OWL classes belong to a superclass 

owl:Thing.  In other words, all the user-defined classes are subclasses of 

owl:Thing.    

For example, in the Geography ontology, the classes Ocean, Mountain, 

and Country are defined in OWL as stated in Figure 7. 

Figure 7. OWL Class Definition by Name 
 

Here, the classes Ocean, Mountain, and Country are the named classes.  

Class definitions are specified with owl:Class and the rdf:ID identifies the name.  

owl:Class construct is a subclass of rdfs:Class, which an additional description 

logic component5.  Within the ontology document, references to these classes are stated 

                                                 
5 In OWL Full, these two statements,  owl:Class and rdfs:Class, are equivalent.   

<owl:Class rdf:ID="Ocean"/> 
      <owl:Class rdf:ID="Mountain"/> 
 <owl:Class rdf:ID="Country"/> 
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as #Ocean, #Mountain, and #Country.  OWL uses the RDF Schema syntax 

rdf:ID to introduce the class name as part of the class definition.   

The basic component of building a taxonomy of classes is the 

rdfs:subClassOf construct.  As in a tree structure, this syntax relates the specific 

subclass to the general superclass.  Thus, all the instances of the subclass are instances of 

the superclass.  This relationship is transitive so that if class B is a subclass of class A and 

class C is a subclass of class B, then class C is a subclass of A.  The OWL statements in 

Figure 8 exemplify the subclass relationship. 

 
 
 
 
 
  
 
 
 

Figure 8. Basic Subclass Specification 
 

The examples in Figure 8 define two OWL classes, Mountain and Volcano.  

It explicitly states that class Mountain is a subclass of BodyOfLand and class 

Volcano is a subclass of Mountain.  Therefore, by rules of subsumption, Volcano is 

also a subclass of BodyOfLand, inheriting all the characteristics of BodyOfLand as 

well as additional properties of Mountain.   

There are two components to a class definition.  The first part is the name 

declaration, or reference, and the second part is the list of class description or restriction.  

Furthermore, subclasses inherit the properties and their restriction from their parent 

classes.  And every restriction specified as part of the class definition further confines the 

instances of that class.  In other words, the individuals are the instances of the 

intersection of all the restrictions of the class.  Thus, in the Geography example, Volcano 

is bound by all the properties of the Mountain and BodyOfLand classes in addition to its 

own set of restrictions. 

 

<owl:Class rdf:ID="Mountain"/> 
         <rdfs:subClassOf rdf:resource="#BodyOfLand"/> 
     … 
 </owl:Class> 
 
 <owl:Class rdf:ID="Volcano"/> 
         <rdfs:subClassOf rdf:resource="#Mountain"/> 
     … 
 </owl:Class> 
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a. Disjoint Classes (disjointWith)  

When classes are disjointed from one another, they cannot share the same 

individuals.  In other words, if the classes Ocean and Lake are disjointed from each 

other, they cannot have an individual that is a member of both classes. 

 
 

 

 

 

Figure 9. Disjoint Classes 
 

The OWL statement in Figure 9 specifies that the LandlockedCountry class 

is disjoint from all the classes listed in the statement.  However, this does not assert that 

the listed classes are disjointed from each other.  That is, by this description, 

CoastalCountry is not disjointed with IslandCountry.  In order to state mutual 

disjointed relationships, every class must be asserted with the owl:disjointWith 

relationship.   

4. Individuals 
As briefly discussed, the members or instances of classes are referred to as 

individuals.  There are two ways of defining an individual in OWL.  The two statements 

are identical in meaning.  

 
 
 
 
 
 
 
 

Figure 10. Instantiating OWL Individuals 
 

The first method of declaring an individual is by simple instantiating the class as 

in the first statement in Figure 10.  The second method uses rdf:type, like in RDF, to 

link an individual to its class and it is a two-part statement.  It should be clarified that 

<Ocean rdf:ID="PacificOcean"/> 
          
            Or 
<owl:Thing rdf:ID="PacificOcean"/> 
 
<owl:Thing rdf:about="#PacificOcean"/> 
   <rdf:type rdf:resource="#Ocean"/> 
</owl:Thing> 

  <owl:Class rdf:ID="LandlockedCountry"> 
    <rdfs:subClassOf rdf:resource="Country"> 
    <owl:disjointWith rdf:resource="CoastalCountry"/> 
    <owl:disjointWith rdf:resource="IslandCountry"/> 
    <owl:disjointWith rdf:resource="PeninsulaCountry"/> 
    <owl:disjointWith rdf:resource="ArchipelagoCountry"/> 
  </owl:Class> 
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these two statements do not need to be adjacent.  In fact, they do not even need to be part 

of the same ontology.  Since Web ontologies are designed for distribution, they can be 

augmented or imported within other ontologies.  Thus, the instantiation and use of 

individuals can occur in two separate ontology documents. 

5. Properties 
Properties assert general information about a class and specify concrete 

information about individuals of that class.  The sections below discuss the different 

types of properties and how they are used as class restrictions. 

a. Defining Properties 
There are two types of properties, namely datatype and object properties.  

Datatype properties specify the relationships between individuals and RDF literals or 

XML Schema datatypes.  Object properties represent the relationships between 

individuals of one or more classes.  Several methods can be used to create a property 

relationship, whether it is datatype or object property.  The most common method to 

specify an object property is limiting the domain and range of the property to individuals 

of certain classes.  In Figure 11, the hasBoundary property has a range restriction of 

all the individuals of the BodyOfLand class and a domain restriction of all the 

individuals of BodyOfWater class.  

 
 
 
 
 
 
 
 

Figure 11. Property Restriction Using Domain and Range 
 

Unlike the hasBounday property, the hasBorder property in Figure 

11 shows only a domain restriction.  By not explicitly stating the range restriction within 

the property definition, it is implied that all individuals, regardless of class will have the 

the default range owl:Thing. 

  <owl:ObjectProperty rdf:ID="hasBoundary"> 
      <rdfs:range rdf:resource="#BodyOfLand"/> 
      <rdfs:domain rdf:resource="#BodyOfWater"/> 
  </owl:ObjectProperty> 
 
  <owl:ObjectProperty rdf:about="#hasBorder"> 
      <rdfs:domain rdf:resource="#BodyOfLand"/> 
  </owl:ObjectProperty> 
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Similar to classes, properties may be organized as a hierarchy.  Likewise, 

a property may be defined as a subproperty, or a specialization, of another property.  

Figure 12 shows examples of the property subsumption using the construct 

rdfs:subPropertyOf. 

 
 

 

 

 

 

Figure 12. Property Subsumption Examples 
 

Using rdfs:subPropertyOf, the hasOfficialLanguage object 

property is a type of hasCountryDescriptor property, inheriting all of the parent 

property's characteristics.  The definition of hasCountryDescriptor is defined by 

the domain and range restrictions.  Although the hasOfficialLanguage property 

inherits these restrictions from the parent property, by explicitly assigning a new range, 

the Language class, it further restricts the possible individuals that can fill the value of 

this property.   Therefore, the range of this property is not merely the instances of the 

CountryDescriptor class, as specified in the parent property, it is further confined 

to the instances of the Language class.   

Using property restrictions, it is now possible to expand on the simple 

class definition.  The class CoastalCountry, for example, includes a property 

restriction as part of its definition. 

 

  <owl:ObjectProperty rdf:ID="hasCountryDescriptor"> 
    <rdfs:domain rdf:resource="#Country"/> 
    <rdfs:range rdf:resource="#CountryDescriptor"/> 
  </owl:ObjectProperty> 
 
  <owl:ObjectProperty rdf:ID="hasOfficialLanguage"> 
    <rdfs:range rdf:resource="#Language"/> 

  <rdfs:subPropertyOf rdf:resource="#hasCountryDescriptor"/>    
</owl:ObjectProperty> 
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Figure 13. Property Restriction in Class Description 
 

Consider the restriction listed under the second rdfs:subClassOf 

syntax in Figure 13.  This subclass declaration is of an unnamed class, or an anonymous 

class, used as part of the CoastalCountry class definition.  Under the anonymous 

class description, the restriction uses the owl:minCardinality to state that the 

individuals of this class must have at least one associated hasCoastline property 

value. Thus, the complete definition of CoastalCountry states that all individuals of 

this class are an instance of the Country class and meet the minimum cardinality 

restriction of the hasCoastline property.  More will be discussed about the 

cardinality property in Section 7.b. of this chapter. 

b. Properties and Datatypes 

Datatype property values range between RDF literals (rdfs:Literal) 

and XML Schema datatypes.  Table 5 is the list of XML Schema types used with OWL 

datatype properties.   

  <owl:Class rdf:ID="CoastalCountry"> 
    <rdfs:subClassOf rdf:resource="#Country"/> 
    <rdfs:subClassOf> 
       <owl:Restriction> 
      <owl:onProperty rdf:resource="#hasCoastline"/> 
         <owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">1 

    </owl:minCardinality> 
       </owl:Restriction> 
    </rdfs:subClassOf> 
    … 
  </owl:Class> 
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xsd:string xsd:normalizedString xsd:boolean 
xsd:decimal xsd:float xsd:double 
xsd:integer xsd:nonNegativeInteger xsd:postiveInteger 
xsd:nonPositiveInteger xsd:negativeInteger xsd:unsignedByte 
xsd:long xsd:int xsd:short 
xsd:unsignedLong xsd:unsignedInt xsd:unsignedShort 
xsd:hexBinary xsd:base64Binary  
xsd:dateTime xsd:time xsd:date 
xsd:gYear xsd:gMonthDay xsd:gDay 
xsd:byte xsd:gYearMonth xsd:gMonth 
xsd:anyURI xsd:token xsd:language 
xsd:NMTOKEN xsd:Name xsd:NCName 

Table 5. XML Schema Datatypes 
 

6. Property Characteristics 
In addition to domains and ranges, other OWL constructs allow greater semantic 

expressiveness.  These OWL property characteristics provide the means for classification 

and reasoning on the ontology. 

a. Transitive and Symmetric Properties 
OWL properties can take on transitive attributes.  If a property is defined 

as transitive to another property, the values of the property may have inferred 

relationships with one another.  Mathematically, a transitive property is expressed as: 

P(a,b) and P(b,c) implies P(a,c) 

In the Geography ontology, locatedIn is a transitive property.  Figure 14 shows how 

transitive property is defined in OWL. 

 
   
 
 
 
 
 
 
 
 
 
\ 
 

Figure 14. Transitive Property Defined 

  <owl:ObjectProperty rdf:ID="locatedIn"> 
    <rdfs:type rdf:resource="&owl;TransitiveProperty"/> 
    <rdfs:domain rdf:resource="&owl;Thing"/>        

 <rdfs:range rdf:resource="#PoliticalGeography"/>        

  </owl:ObjectProperty> 
 
  <Region rdf:ID="VaticanCity"/> 
    <locatedIn rdf:resource="#Rome"/> 
  </Country> 
 
  <Region rdf:ID="Rome"/> 
    <locatedIn rdf:resource="#Italy"/> 
  </Country> 
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The OWL statements in Figure 14 explicitly state that the individual 

VaticanCity is located in individual Rome and that individual Rome is located in 

individual Italy.  Since locatedIn is defined as a transitive property, it is inferred 

that VaticanCity is located in the region of Italy.   

Another OWL property construct is the symmetric attribute.  If a property 

is designated as symmetric, then for any values a and b, there is the following 

relationship: 

P(a,b), iff P(b,a) 

In the Geography ontology, adjacentTo is a symmetric property.  Figure 15 shows 

how symmetric property is defined in OWL. 

 
 
 
 
 
 
 
 
 
 

Figure 15. Symmetric Property Defined 
 

The OWL statements in Figure 15 explicitly state that the individual Nigeria 

has the adjacentCountry property value of the individual Cameroon.  However, 

because adjacentCountry is a symmetric property, it can is inferred that Cameroon 

has the adjacentCountry property value of Nigeria.  In order for a property to be 

symmetric, it must have the same domain and range value.  It is invalid to have a 

symmetrical relationship between two individuals that belong to different classes.     

b. Functional Property 
An OWL functional property states that there is only one value associated 

with the property.  If an individual designates more than one value of a functional 

property attribute, then it is assumed that those values are the same.  Mathematically, a 

functional property is stated as follows: 

  <owl:ObjectProperty rdf:ID="adjacentCountry"> 
    <rdfs:type rdf:resource="&owl;SymmetricProperty"/> 
    <rdfs:domain rdf:resource="#Country"/>        
    <rdfs:range rdf:resource="#Country"/>      
  </owl:ObjectProperty>  
 
  <Country rdf:ID="Nigeria"/> 
    <locatedIn rdf:resource="#Africa"/> 
    <adjacentCountry rdf:resource="#Cameroon"/> 
  </Country> 
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P(a,b) and P(a,c) implies a = c 

In the Geography ontology, hasCapitalCity is a functional property.  Figure 16 

shows how a functional property is defined in OWL. 

 
 
 
 
 
 

Figure 16.  Functional Property Defined 
 

For every individual of the Country class, there can only be one value 

associated with the hasCapitalCity property.  Thus, for the country individual 

UnitedStates, if its hasCapitalCity property is filled with WashingtonDC 

and DistrictOfColumbia, it can be assumed that these two values are the identical.   

c. InverseOf Property 

If a property is defined with the owl:inverseOf construct of another 

property, then they have the following relationship: 

P1(a,b) iff P2(b,a) 

The domain and range determines the direction of the property.  That is, the property 

states the relationship from the domain, the subject, to the range, the object.  However, it 

is often necessary to define another property that states the relationship in the opposite 

direction.  Therefore, the “inverse of” property inverses the domain and range of the 

initial property so that the domain becomes the new range and the range becomes the new 

domain.   Figure 17 shows how two properties have an "inverse of" relationship using the 

owl:inverseOf construct. 

 

 

 

 

 

  <owl:ObjectProperty rdf:ID="hasCapitalCity"> 
    <rdfs:type rdf:resource="&owl;FunctionalProperty"/> 
    <rdfs:domain rdf:resource="#Country"/>        
    <rdfs:range rdf:resource="#CapitalCity"/>      
  </owl:ObjectProperty> 
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Figure 17. InverseOf  Property Defined 
 

The OWL statements in Figure 17 indicated that the property 

belongsToCountry is an inverse property of hasCapitalCity.  Hence, if the individual 

Madrid has a belongsToCountry relationship with individual Spain, then by the rules of 

the "inverse of" property, Spain will automatically have a hasCapitalCity relationship 

with Madrid.  Also notice the domain and range of the owl:inverseOf properties.  The 

domain of one property is the range of another, and vise versa.   

d. Inverse Functional Property 
The inverse functional property combines the traits of the “inverse of” and 

functional properties.  It indicates that it has an inverse of relationship with another 

property, which must be a functional property.  

The properties hasCapitalCity and belongsToCountry, shown 

in Figure 16, are in fact inverse functional properties.  Since hasCapitalCity is a 

functional property, its inverse must be an inverse functional property.  Mathematically, 

an inverse functional property is expressed as follows: 

   P(a,b) and P(c,b) implies a=c 

In the Geography ontology, the belongsToCountry property is defined as inverse 

functional property, shown in Figure 18.  

 

 

 

  <owl:ObjectProperty rdf:ID="hasCapitalCity"> 
    <rdfs:type rdf:resource="&owl;FunctionalProperty"/> 
    <rdfs:domain rdf:resource="#Country"/>        
    <rdfs:range rdf:resource="#CapitalCity"/>      
  </owl:ObjectProperty>  
 
  <owl:ObjectProperty rdf:ID="belongsToCountry"> 
    <owl:inverseOf rdf:resource="#hasCapitalCity "/> 
    <rdfs:domain rdf:resource="#CapitalCity "/>        
    <rdfs:range rdf:resource="#Country"/>      
  </owl:ObjectProperty>  
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Figure 18. Inverse Functional Property Defined 
 

If the individual WashingtonDC has a belongsToCountry relationship 

with UnitedStated, and DistrictOfColumbia also has a 

belongsToCountry relationship with UnitedStated, then by the rules of inverse 

functional properties, WashingtonDC and DistrictOfColumbia are identical 

objects.   

An inverse functional property is similar to a unique key in a database.  

The domain and range of the inverse functional properties create a unique identifier 

combination, where one element of the domain is always associated with a particular 

domain of the range. 

7. Property Restrictions 
In addition to the variety of property characteristics discussed above, classes may 

use property restrictions as part of their description.  The restrictions are defined by the 

syntax owl:Restrictions and owl:onProperty.   

a. someValuesFrom and allValuesFrom Restrictions 
Although the domain and range restrictions of a property apply to all 

classes using that property, a class definition may further confine the property value at 

the local level.  The restriction syntax owl:someValuesFrom states that for every 

instance of the class using that particular property, the values of the property must have at 

least one individual of the class specified by the owl:someValuesFrom clause. 

Figure 19 shows a class definition of IslandCountry and the use of 

owl:someValuesFrom to limit the hasLandType property value. 

 

 

  <owl:ObjectProperty rdf:ID="belongsToCountry"> 
    <rdfs:type rdf:resource="&owl;InverseFunctionalProperty"/> 
    <owl:inverseOf rdf:resource="#hasCapitalCity "/> 
    <rdfs:domain rdf:resource="#CapitalCity "/>        
    <rdfs:range rdf:resource="#Country"/>      
  </owl:ObjectProperty> 
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Figure 19. owl:someValuesFrom  Example 
 

The owl:someValuesFrom  restriction states that the individuals of 

IslandCountry with the property hasLandType value must have at least one 

individual belonging to the Island class.  This restriction on the property only applies 

to this class and its subclasses and not other that use the hasLandType property, such 

as its sibling class LandlockedCountry. 

The owl:allValuesFrom restriction states that if an instance of a 

class has any value for this restricted property, they all must be a value from the specified 

class of individuals.  Unlike the owl:someValuesFrom  restriction, which requires 

the property to have at least one value, the owl:allValuesFrom restriction allows the 

property to have a null value.  The owl:allValuesFrom is often used in conjunction 

with owl:someValuesFrom as a closure axiom for a property restriction.  If the 

developer's intention is to restrict the property value to only individuals a certain class, 

rather than at least one value, then owl:allValuesFrom should be used with 

owl:someValuesFrom.   

  <owl:Class rdf:ID="IslandCountry"> 
    <rdfs:subClassOf rdf:resource="#Country"/> 
    … 
    <rdfs:subClassOf> 
       <owl:Restriction> 
          <owl:onProperty rdf:resource="#hasLandType"/> 
          <owl:someValuesFrom rdf:resource="#Island"/> 
       </owl:Restriction> 
    </rdfs:subClassOf> 
    … 
  </owl:Class> 
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Figure 20. owl:someValuesFrom & owl:allValuesFrom Example 
 

Figure 20 shows a class description using both owl:someValuesFrom and 

owl:allValuesFrom restrictions.  This implies that all individuals of 

IslandCountry with the hasLandType property value can only have values of 

Island individuals. 

b. Cardinality Restriction 
Cardinality specifies the minimum, maximum, or the exact number of 

values in a property relationship.  Unless cardinality is specified, it is assumed that there 

is an unlimited possible property values.  Cardinality is important when the class 

description is based on a specific number of property attributes.  For example, when 

defining a bi-coastal area, the class description must specify that it borders the ocean on 

two sides of the land.  Likewise minimum and maximum cardinalities put a specific 

restriction on a class.  

Figure 21 shows a Geography class BicoastalCountry definition.  

 

 

 

 

 

 

 

Figure 21. Cardinality Example 

 

  <owl:Class rdf:ID="BicoastalCountry"> 
    <rdfs:subClassOf rdf:resource="#CoastalCountry"/> 
    <rdfs:subClassOf> 
       <owl:Restriction> 
          <owl:onProperty rdf:resource="#bordersOcean"/> 
          <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">2  

    </owl:cardinality> 
       </owl:Restriction> 
    </rdfs:subClassOf> 
  </owl:Class> 

  <owl:Class rdf:ID="IslandCountry"> 
    <rdfs:subClassOf rdf:resource="#Country"/> 
    <rdfs:subClassOf> 
       <owl:Restriction> 
          <owl:onProperty rdf:resource="#hasLandType"/> 
          <owl:someValuesFrom rdf:resource="#Island"/> 
          <owl:allValuesFrom rdf:resource="#Island"/> 
       </owl:Restriction> 
    </rdfs:subClassOf> 
    … 
  </owl:Class> 
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Based on the OWL statement, the owl:cardinality constructs restrict the 

class to have two bordersOcean property values.  Therefore, all individuals of 

BicoastalCountry using this property must specify exactly two property values.  

Likewise, owl:maxCardinality and owl:minCardinality set 

the upper and lower bounds of the property cardinality.  Used in combination, they limit 

the property to a numeric range. 

c. owl:hasValue Restriction 

The owl:hasValue construct restricts the class definition by specifying 

the exact value of the specified property.  Hence, individuals of the class must have at 

least one of its property values equal to the owl:hasValue restriction. 

 
 
 
 

 

 

 

 

 

 

 

Figure 22. owl:hasValue Example 
 

Figure 22 is a class definition of Lake, which specifies that its hasSaline must 

have a property value of NotSalty.  This declares that all individuals of Lake must 

have at least one hasSaline property value that equals NotSalty to satisfy this class 

requirement.  Similar to the allValuesFrom and someValuesFrom, this restriction 

is only applied to the local class. 

d. Equivalent Classes and Properties  

The owl:equivalentClass indicates that two classes have exactly 

the same class extensions or set of individuals.  This construct has a variety of use.  First, 

when adopting multiple ontologies, it is used to map one class to another if they are 

  <owl:Class rdf:ID="Lake"> 
    <rdfs:subClassOf rdf:resource="#BodyOfWater"/> 
    <rdfs:subClassOf> 
       <owl:Restriction> 
          <owl:onProperty rdf:resource="#hasSaline"/> 
          <owl:hasValue> 
             <SaltContent rdf:ID="NotSalty"/> 
          </owl:hasValue> 
       </owl:Restriction> 
    </rdfs:subClassOf> 
    … 
  </owl:Class> 
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identical with different class names.  Second, it provides another method for defining 

classes.  The owl:equivalentClass allows classes to be defined by a set of 

restrictions.  

 
 
 
 
 
 
 
 

Figure 23. owl:equivalentClass Example 
 

The OWL statements of Figure 23 indicate that the definition of BodyOfWater 

class is exactly equivalent to all the classes that meet the restriction requirement that the 

consistsOf property value is only individuals of the Water class.  Although this 

description may be used with the rdfs:subClassOf, as discussed above, that would 

have a different implication.  The restriction description under rdfs:subClassOf 

states a necessary condition while owl:equivalentClass goes a step further to 

create a necessary and sufficient condition.  Thus, if the OWL statement in Figure 23 

used rdfs:subClassOf, it would imply that individuals that has the consistOf 

property value of water may or may not be the same as  BodyOfWater individual; 

however, the description using owl:equivalentClass declares that all things that 

consists of water must be a BodyOfWater.  The definitions of rdfs:subClassOf 

and owl:equivalentClass are stated in Table 6. 

 
Relationship Implication 
rdfs:subClassOf BodyOfWater(a) implies consistsOf(a,b) & Water(b) 

owl:equivalentClass BodyOfWater(a) implies consistsOf(a,b) & Water(b) 
consistsOf(a,b) & Water(b)implies BodyOfWater(a) 

Table 6. Construct for Necessary vs. Necessary & Sufficient Conditions 

 

  <owl:Class rdf:ID="BodyOfWater"> 
    <owl:equivalentClass> 
      <owl:Restriction> 
        <owl:onProperty rdf:resource="#consistsOf"/> 
        <owl:someValuesFrom rdf:resource="#Water"/> 
        <owl:allValuesFrom rdf:resource="#Water"/> 
      </owl:Restriction> 
    </owl:equivalentClass> 
  </owl:Class> 
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Similarly, properties may also use the construct owl:equivalenProperty to 

link properties together.  That is, any two properties tied with this syntax have exactly the 

same value, or property extension.   

e. Individual Equivalence Using owl:sameAs  
Similar to the construct used for declaring that two classes are equivalent, 

the construct owl:sameAs is used to declare that two individuals are equivalent..  Figure 

24 shows how the owl:sameAs construct is used to indicate that the individual America 

is identical to the individual UnitedStatesOfAmerica. 

 
 
 
 

Figure 24. owl:sameAs Example 
 

This syntax is also useful when linking multiple ontologies.  

owl:sameAs construct allows equating individuals from different OWL documents.  

The fact that individual equivalence or distinction is made explicitly implies that OWL 

does not assume uniqueness based on name.  The above OWL statement asserts 

equivalence between two individuals.  However, the same assertion may be inferred 

using a functional property.  Given that the hasCapitalCity is a functional property, 

as defined above, the statement in Figure 25 states that the two individuals are equivalent.  

 
 
 
 
 

Figure 25. Individual Equivalence Using Functional Property 
 

Since hasCapitalCity is a functional property, it is simply inferred that 

DistrictOfColumbia is the same as WashingtonDC.   

f. Individuals Differences Using owl:differentFrom & 
owl:AllDifferent 

The inverse OWL construct of owl:sameAs is 

owl:differentFrom.  This construct is used to make individuals explicitly distinct 

  <Country rdf:ID="America"> 
    <owl:sameAs rdf:resource="#UnitedStatesOfAmerica"> 
  </Country> 

  <Country rdf:ID="UnitedStates"> 
    <hasCapitalCity rdf:resource="#DistrictOfColumbia"/> 
    <hasCapitalCity rdf:resource="#WashingtonDC"/>  
  </Country> 
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from one another.  This is important when using individuals as property values.  Figure 

26 illustrates a Geography example for the distinct individuals of Climate. 

 

 
 

(i)  
 
 
 
 

Figure 26. owl:differentFrom Example 
 

One way to assert distinction between individuals is to use the construct 

owl:differentFrom.  By making these individuals explicitly distinct, it ensures that 

the properties do not assume equivalence for these individuals.  That is, if a functional 

property tries to fill its value with two explicitly distinct individuals, an error would be 

raised.  In the Geography ontology, the functional property, hasClimate, cannot have 

both Dry and TropicalHumid individuals as values of one instance.  Since these two 

individuals are explicitly unique, by the owl:differentFrom construct, they cannot 

be made equivalent by a functional property.     

Another method for declaring individual distinction is by using the 

owl:AllDifferent and owl:distinctMembers constructs6.   

 
 
 
 
 
 
 

Figure 27. owl:AllDifferent & owl:distinctMembers Example 
 

                                                 
6 The owl:distinctMembers can only be used in combination with owl:AllDifferent. 

  <Climate rdf:ID="Dry"/> 
 
  <Climate rdf:ID="TropicalHumid"/> 
    <owl:differentFrom rdf:resource="#Dry"/> 
  </Climate> 
 
  <Climate rdf:ID="Highland"/> 
    <owl:differentFrom rdf:resource="#Dry"/> 
    <owl:differentFrom rdf:resource="#TropicalHumid"/> 
  </Climate> 

  <owl:AllDifferent> 
    <owl:distinctMembers rdf:parsetype="Collection"/> 
    <Climate rdf:about="#Dry"/> 
    <Climate rdf:about="#TropicalHumid"/> 
    <Climate rdf:about="#Highland"/> 
    </owl:distinctMembers> 
  </owl:AllDifferent> 
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Figure 27 shows how to distinguish all the unique individuals in one OWL 

statement, rather than with each individual declaration.  The statement in Figure 27 is 

semantically identical to the OWL statements in Figure 26. 

8. Complex Classes 
There are additional constructs used to create classes or class expressions.  Class 

expressions are nested class descriptions, without the need for naming each “intermediate 

class” separately.  Class expression allows for complex classes using set operations.  This 

is done using anonymous classes or value restricted classes. Specifically, there are three 

types of set operations, namely union (owl:unionOf), intersection 

(owl:intersectionOf), and complement (owl:complementOf).  These 

constructs can be thought of as the “and”, “or”, and “not” logical operators.  Another 

method of creating complex classes is by enumeration, where a class is described by 

exhaustively listing the individuals using the owl:oneOf construct. 

a. Set Operators (intersectionOf, unionOf, complentOf) 
Using the set operations as a class description is closer to a “definition” 

than other class description discussed thus far.  That is, the membership of class is wholly 

determined by the set operation specification.  The set operator “intersection of”, 

owl:intersectionOf, describes a class with individuals that belong to all 

specifications listed under the class description.  One example from the Geography 

ontology using the owl:intersectionOf set operation is the IslandCountry 

class. 

 
 
 
 
 
 
 
 
 
 
 

Figure 28. owl:intersectionOf Example 
 

  <owl:Class rdf:ID="IslandCountry"> 
    <owl:intersectionOf rdf:parseType="Collection"> 
      <owl:Class rdf:about="Country"/> 
      <owl:Restriction> 
        <owl:onProperty rdf:resource="#hasLandType"/> 
        <owl:someValuesFrom rdf:resource="#Island"/> 
        <owl:allValuesFrom rdf:resource="#Island"/> 
      </owl:Restriction> 
    </owl:intersectionOf> 
  </owl:Class> 



 

 39

In Figure 28, IslandCountry is strictly the intersection of Country class and 

the set hasLandType property values of the Island individuals.  Therefore, all individuals 

of IslandCountry class must belong as extensions of both of these specifications.   Notice 

the use of the syntax rdf:parsetype=”Collection” within OWL’s intersection syntax.  As 

discussed in the RDF section, it is used to exhaustively list membership of a class.  This 

construct will be used with the other set operations as well. 

  The second set operation is the “union of”, with the owl:unionOf 

construct.  Unlike owl:intersectionOf, the owl:unionOf operator describes a 

class with individuals that belong to at least one of the specifications listed under the 

class description.  

 

 
 
 
 
 

Figure 29. owl:unionOf Example 
 

In Figure 29, the rules on the union logic imply that the 

SaltyBodyOfWater class includes the individuals of both the Ocean and Sea classes.  

Since the union set operator is an “or” logic, the description above states that all the 

individuals of SaltyBodyOfWater are made up of individuals of Ocean or Sea. 

The third operator is owl:complementOf.  This construct is the logic 

“not,” where the class describes all the individuals that do not belong to the specified 

class extension.   

 
 
 
 
 
 

Figure 30. owl:complementOf Example 

  <owl:Class rdf:ID="SaltyBodyOfWater"> 
    <owl:unionOf rdf:parseType="Collection"> 
      <owl:Class rdf:about="#Ocean"/> 
      <owl:Class rdf:about="#Sea"/> 
    </owl:unionOf> 
  </owl:Class> 

  <owl:Class rdf:ID="PhysicalGeography"/> 
 
  <owl:Class rdf:ID="PoliticalGeography"> 
    <owl:complementOf rdf:resource="#PhysicalGeography"/> 
  </owl:Class> 
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In the OWL statement in Figure 31, the members of the 

PoliticalGeography include all individuals that are not members of the 

PhysicalGeography class.  Since this construct can include a very large set of 

members, it is often used in combination with other operators, as in Figure 31.   

 
   
 
 
 
 
 
 

Figure 31. owl:complementOf & owl:intersectionOf Example 
 

In Figure 31, the NonSaltyBodyOfWater class is an intersection of two 

classes, one named and one anonymous.  The class description, using two set operators, 

states that individuals of this class must be of both BodyOfWater and NOT a member of 

the SaltyBodyOfWater class. 

 
b. Enumerated Classes (oneOf) 

Another method of defining a class is by direct enumeration of all of its 

members or individuals.  Using the owl:oneOf construct, the class is described by 

exhaustively listing all the individuals that make up the class.  No other individual, other 

than those included in the list, can be a member of the class. 

 
 
 
 
 
 
 

Figure 32. Enumeration Example 
 

In Figure 32, the SaltContent class is defined by enumeration; listing all 

the members, Salty and NotSalty, of the class.  In order for this definition to be valid, 

every individual must be declared correctly and they must all belong to a named class.  It 

  <owl:Class rdf:ID="NonSaltyBodyOfWater"> 
    <owl:intersectionOf rdf:parseType="Collection"> 
      <owl:Class rdf:about="#BodyOfWater"/> 
      <owl:Class> 
    <owl:complementOf rdf:resource="#SaltyBodyOfWater/"> 
      </owl:Class> 
    </owl:intersectionOf> 
  </owl:Class> 

  <owl:Class rdf:ID="SaltContent"> 
    <rdfs:subClassOf rdf:resource="PhysicalDescriptor"> 
    <owl:oneOf rdf:parsetype="Collection"/> 
       <SaltContent rdf:about="Salty"/> 
       <SaltContent rdf:about="NotSalty"/> 
    </owl:oneOf> 
  </owl:Class> 
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is not required for the individuals to be declared as a member of the class being defined, 

although that is often the most logical. 

 

D. CONCLUSION 
This chapter covered all the RDF and OWL semantics necessary to develop a 

OWL-DL ontology.  Understanding these constructs is crucial to building a semantically 

rich ontology for the Web or other Web-related applications.  Although there are OWL 

generating ontology editors available, such as Protégé, without learning how and when 

the OWL semantics are used, it is not possible to build a valid ontology.  This chapter 

should serve as the foundation to create a useful and meaningful ontology. 

Having gained an understanding of all the basic components of the RDF and 

OWL, the next step is learning the process for developing an ontology.  The next chapter 

describes a methodology of ontology development.  
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III. ONTOLOGY DEVELOPMENT METHODOLOGY 

A. INTRODUCTION 
It is generally agreed upon that ontologies are the knowledge representation 

component of the Semantic Web.  Although the realization of the Semantic Web is still a 

distant goal, there is a growing interest for ontologies to be incorporated into current 

technologies.  Many disciplines are seeing the immense value of ontologies as a way to 

codify a common set of information or knowledge to be shared across multiple 

applications.  It provides users with a consistent and agreed-upon knowledge base that 

both humans and machines can process.  While no ontology can model all the nuances of 

any domain area, it is possible and valuable to abstract the major concepts and how they 

relate to one another.  A valid knowledge representation system that is widely used and 

shared could save effort for those who lack access to subject matter experts (SMEs).  

Likewise, SMEs are motivated to provide users and applications with basic domain 

knowledge through the development of ontologies, thus providing users with consistent 

sets of information that they can maintain and manage. 

Following the discussion of OWL-DL constructs presented in the previous 

chapter, this chapter examines a methodology for developing an OWL-DL ontology.  

This process involves modeling the real world concepts and their relationships into OWL 

classes, properties and instances.  Although ontology development may be easily 

understood, ontologies should be developed by SMEs or domain experts, particularly in 

complex or technical domain areas, such as biomedicine or aircraft components.  This 

chapter addresses an approach of transferring domain knowledge into a valid ontology.  It 

is important for ontology developers to understand that building a meaningful ontology is 

a highly iterative process.  The greater the complexity of the domain and its scope, the 

more iterations or cycles of development is required.   

When an ontology is developed in OWL-DL, one can use a reasoning or an 

inference application to correctly classify the concepts of the domain based on their 

descriptions.  As mentioned in Chapter 2, OWL-DL derives its semantics from 

description language, which is a description logic formalism for representing logical 
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meaning for reasoning computations.  The capacity of inferencing is a highly valuable 

component, especially as the ontology grows in size and complexity.  There are 

applications, such as CLASSIC and RacerPro, dedicated to processing the description 

logic languages.  For ontology development in this chapter and the OAKDA application 

in the latter chapters, the RacerPro7 will be the reasoning and inferencing engine of 

choice for OWL-DL ontologies. 

Throughout this chapter, the authors use the Protégé ontology development 

environment to illustrate the process of building an ontology.  Although there are various 

OWL-DL ontology development environments, Protégé provides a user-friendly plug-in 

for RacerPro and a graphic user interface (GUI) that hides the details of the OWL syntax 

from the developer.  While it is crucial to understand the OWL-DL constructs in building 

a valid ontology, the purpose of this chapter is to understand the process and 

methodology rather than the syntax.  Thus, the focus will shift away from the language 

constructs to the developmental steps and key concepts unique to developing an OWL-

DL ontology. 

The rest of this chapter is dedicated to understanding the purpose and method of 

developing an ontology.  Section B will discuss why ontologies are important and useful 

as a knowledge representation system.  Section C surveys previous work on 

methodologies for building ontologies.  Section D details a proposed seven-step 

development methodology using Geography as the domain of interest.  Section E 

discusses other relevant considerations, such as exporting existing ontologies. 

 

B. THE PURPOSE OF BUILDING AN ONTOLOGY 
The word ontology has its origin in the philosophy discipline.  Ontology is 

defined in the Merriam-Webster dictionary as “(1) A branch of metaphysics concerned 

with the nature and relations of being; (2) A particular theory about the nature of being or 

the kinds of existents.” [http://www.m-w.com/, January 2006] This definition pertains to 

a particular study of metaphysical philosophy concerning the nature of existence and its                                                  
7 RacerPro is a DL inference system.  RacerPro, which stands for Renamed ABox Concept Expression 

Reasoner, is a knowledge representation application using highly optimized tableau calculus for description 
logic expressions.  It provides reasoning for multiple ABoxes and TBoxes.  
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experience.  This concept is usually referred to as the “Big O” Ontology because it 

defines a named idea in philosophy.  However, there is also what is known as the “little 

o” ontology, which began in the field of Knowledge Management and it is widely 

adopted in Information Technology and AI disciplines.  Specifically, Thomas Gruber of 

the Knowledge Systems Laboratory at Stanford University first defined an ontology as 

“specification of conceptualization.”  More explicitly, an ontology is “a description (like 

a formal specification of a program) of the concepts and relationships that can exist for an 

agent or a community of agents. This definition is consistent with the usage of ontology 

as set-of-concept-definitions, but more general.” [Gruber, 1993, 199]  Gruber’s definition 

is further expounded to state that the “little o” ontology has two parts, namely that (1) it 

describes and represents an area of knowledge, and (2) it defines “the common words and 

concepts of the description.” [Daconta et al., 2003, 186] 

Using ontologies as a system of knowledge representation is an important 

contribution made by the field of Knowledge Management.  Although there are other 

systems or framework for knowledge representation, ontologies provide a reusable, 

sharable and platform neutral knowledge construct.  According to Gruber, many other 

knowledge systems are "isolated monoliths characterized by high internal coupling and a 

lack of external coupling interfaces that would enable the developer to reuse software 

tools and knowledge bases as modular components.” [Gruber, 1991, 1]  Thus, he argues 

that the only possible method of sharing and reusing these knowledge bases is to import 

the knowledge representation system and its programming environment.  However, using 

the software engineering approach of “decomposing” these indivisible systems, these 

knowledge bases should be broken into accumulable, sharable and reusable modular 

building blocks.  Gruber states that three decomposition techniques are often used in AI 

for software development.   These are using declarative knowledge representation, 

separate the knowledge from the program; identifying the classes and relationships 

inherent in the application-specific facts and reorganize the knowledge to allow 

inheritance from these constructs; and characterizing general problem solving tasks (i.e. 

classification) and inferencing classes (i.e. subsumption) and design corresponding 

algorithms and methods [Gruber, 1991, 2].  However, he further argues that these 
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strategies alone are insufficient to ensure sharability of the system.  In addition to 

formalizing declarative knowledge, organizing class and relationship hierarchies, and 

characterizing tasks and inferences, Gruber introduces the need for canonical form of the 

declarative knowledge and common ontologies.  First, “canonical form of the declarative 

knowledge” is a standard set of syntax and constructs or “semantics” that will be used as 

the knowledge representation language.  Second, common ontologies are “vocabularies 

of representational terms – classes, relations, functions, object constraints – with agreed-

upon definitions, in the form of human readable text and machine-enforceable, 

declarative constraints on their well-formed use.” [Gruber, 1991, 2]  The canonical form 

and common ontologies are two necessarily elements that allow the knowledge 

representation systems to be shared and reused across multiple platforms.   

Based on Gruber's broad definition, an ontology can take on various forms.  

Types of an ontology may be as basic as a simple catalog, a finite list of terminology, and 

as semantically sophisticated as logical abstraction for disjointed and inverse 

relationships, shown in Figure 33 

 
Figure 33. Ontology Spectrum 

 

The Ontology Spectrum [McGuiness, 2001, 3] diagram shows the progression of 

concept organization.  As ontologies move from simple taxonomies to a structured 
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knowledge base with properties and restrictions, their need for expressiveness grows.  

The right side of the dotted line in Figure 33 indicates where OWL-DL constructs 

become relevant.  At the far right end of the spectrum, OWL-DL becomes imperative as 

an ontology language.  Furthermore, an inference engine uses OWL's description logic 

capability to verify consistency and completion.  It mathematically checks for 

consistency and makes inference where it deems the relationships to be incomplete.  

These are crucial elements of a meaningful ontology because applications and systems 

rely on valid knowledge representation.  The ontologies of concern in this thesis fall in 

the farthest end of the Ontology Spectrum of Figure 33. 

Given the wide range of ontologies, why are they important or even relevant as an 

information system?  Natalya Noy and Deborah McGuinness argue five specific reasons 

for developing and using an ontology (Noy et. al., 2002, 3).   

• Share a common information structure – By using an ontology that creates a 
common language amongst disparate systems, it becomes possible to share the 
same set of terms and concepts.  This also allows agents to aggregate and extract 
information from other systems and use them appropriately to answer queries. 

• Reuse domain knowledge – Reuse is an important benefit of ontologies because it 
allows separate components to join together seamlessly.  By integrating existing 
ontologies, developers can rely on a trusted source of domain expert of a 
particular component.  Rather than recreating something from nothing, existing 
ontologies can integrate into complex knowledge bases.  

• Make domain assumption explicit – By incorporating domain assumptions into the 
ontology, rather than hard-coding it into a system, it makes it easier to manage 
and change them.  It also helps “users” understand and learn the concepts and 
relationships within the domain. 

• Separate domain and operational knowledge – The ontology, representing the 
domain knowledge, is disconnected from the application, which represents the 
operational knowledge.  This kind of low coupling is valuable in managing 
change in complex systems.   

• Analyze domain knowledge – The accessibility of ontologies makes it possible to 
analyze and validate domain knowledge.  This is a key part of reusing and 
extending any ontology and is a valuable asset to developers and users alike. 

 

In spite of all these reasons, representing real-world concepts and complex 

relationships in simplified two-dimensional ontologies is not only difficult, but experts 
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find it insufficient to model all the intricate relationships of a domain.  Although OWL-

DL has constructs richer in semantics than its predecessors such as RDF, it is still a 

modeling language for representing the real world concepts and relationships.  Since 

semantic-richness must be juxtaposed with computability, there is a conflict between 

“transparency and predictability” and “rigor and completeness,” when considering the 

design and development of an ontology [Rector, 2004, 5].  That is, according to Rector, 

the SME’s preference for representing the domain in its practical way may not align with 

“logic and computational tractability.”  Hence, the developer must constantly balance the 

two perspectives.  The tradeoff is between the domain expert’s preference for rich 

representation of reality and the logics of calculation for the sake of inference and 

classification.   

The goal of the ontology development is not only to represent the domain 

concepts and properties, but also to create a document that can be processed, including 

inferences, by machines. Therefore, rather than trying to model all the components of a 

particular domain, it is preferred to limit to scope to a particular area of interest or 

application.  Before starting the development, the SME should first ask, how will the 

ontology be used?  The answer to this question determines the scope of the ontology and 

the purpose of building it, which affect the overall design and structure of the ontology. 

 

C. METHODOLOGIES FOR ONTOLOGY DEVELOPMENT 
 The growing number of ontologies developing in a variety of fields has lead to 

many proposed methodologies.  All these different methods sprung from different 

domains and necessities, and they all bring important lessons for future developers.  This 

section will review some of the widely known and used methodology for ontology 

developments.   

1. Toronto Virtual Enterprise (TOVE) 
 The first known methodology derives from the experiences of Toronto Virtual 

Enterprise (TOVE) ontology development.  The TOVE methodology steps are as follows: 

1. Motivating Scenarios – These depict the set of problems facing an 
organization, which are described in scenario stories or examples. 
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2. Informal Competency Questions – Based on the scenarios from Step 1, these 
are informal questions that the ontology should be able to answer. 

3. Terminology Specification – All the objects and their relationships are defined 
at this step in first order logic. 

4. Formal Competency Questions – All the ontology terminologies are 
formalized. 

5. Axiom Specifications – All the axioms that specify the object definitions and 
constraints are formally described.  Theses axioms must satisfy and answer 
the competency questions stated in Step 4. 

6. Completeness Theorem – This is the evaluation stage of the development, 
where the ontology is tested to meet all the required conditions. 

 It is argued that the most interesting aspect of the TOVE approach is its 

evaluation process using completeness theorem.  The theorem are important for 

“assessing the extensibility of an ontology – any extension must be able to preserve the 

validity of the completeness theorems – or to provide a benchmark for ontologies” [Jones 

et al, 1998]. 

2. METHONTOLOGY 
 Similar to TOVE, METHONTOLOGY focuses on the assessment and 

maintenance of the ontology.  The major difference between the two is that 

METHONTOLOGY focuses mainly on the maintenance within the life cycle whereas 

TOVE uses formal techniques for addressing limited areas of maintenance [Jones et al., 

1998].  The seven steps of METHONTOLOGY are as follows: 

1. Specification – This step states the purpose of the ontology as well as the 
users, application, scope, and the required level of formality.  The output of 
this step is a “natural-language ontology specification document” [Gomez-
Perez et al., 1995]. 

2. Knowledge Acquisition – In parallel with Step 1, the developer finds the 
source of the ontology domain knowledge in the form of interview with SMEs 
and analyses of literature. 

3. Conceptualization – The terms of the domain are specified as concepts, 
instances, verb relations or properties. 

4. Integration – For the sake of uniformity between different ontologies, 
specifications from other ontologies are consulted and incorporated. 

5. Implementation – The ontology is developed into a formal language, such as 
OWL. 

6. Evaluation – Significant attention is paid to this step of the methodology, 
using different techniques to determine the validity and verification of the 
ontology.  A set of guidelines are used to search for incompleteness, 
inconsistencies, and redundancies. 

7. Documentation – All the steps and the ontology life cycles are documented. 
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 When the ontology is in the prototype phase, the emphasis is on the specification, 

conceptualization, formalization, integration and implementation steps of the lifecycle.  

However, after the ontology matures into the maintenance phase, the developer must shift 

the focus to knowledge acquisition, evaluation and documentation of the ontology [Jones 

et al, 1998].  

 
3. KBSI IDEF5 

 The IDEF5 methodology proposes a set of “guidelines” rather than systematic 

rules for developing an ontology.  It suggests that ontology engineering is an open-ended 

process that should be constantly refined and updated.  The IDEF5 guidelines are as 

follows: 

1. Organizing and Scoping – In the form of a purpose statement, this step 
establishes the objectives and context of the ontology that will be used as a 
“completion criteria.” 

2. Data Collection – The necessary data is collected using the knowledge 
acquisition techniques, such as expert interviews and protocol analysis. 

3. Data Analysis – This step analyzes the data collected in Step 2.  All the 
domain’s objects of interests are identified and the boundaries of the ontology 
are defined. 

4. Initial Ontology Development – A draft of the ontology is developed using 
“proto-concepts,” which are preliminary specifications of objects, properties 
and relationships. 

5. Ontology Refinement and Validation – The “proto-concepts” from Step 4 are 
tested and refined through multiple iterations using deductive validation 
methods.  

 Two representation languages assist in the continual refinement process of the 

IDEF methodology.  The first is the schematic languages, which are graphical notations 

used mostly to facilitate the communication between the ontology developer and the 

domain expert.  The second is the elaboration language, which is a more structured 

representation of the ontology objects and relationships [Jones et al., 1998].  

 The three ontology development methods presented above are equally valid and 

bring important lessons to ontology developers.  However, this thesis proposes a new 

ontology development methodology that is unique to developing an OWL ontology.  The 

goal is to incorporate the different methods proposed above as well as provide a useful 

step-by-step guidance using OWL as the knowledge representation language of the 
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ontology.  Similar to three methodologies reviewed above, the following methodology is 

derived from the lessons learned by the authors while developing the Geography 

ontology. 

 

D. THE STEPS TO DEVELOPING AN ONTOLOGY 
Three basic approaches are used for developing ontologies: top-down, bottom-up, 

or a combination approach.  Although no one method is best, the combination approach, 

that starts with identifying the most obvious concepts and then incorporating the less 

salient concepts later, is better aligned with the iterative process recommended in 

building an ontology, as well as other complicated systems or applications.  The ultimate 

goal is to follow a process leading to a good design and proper structure of the ontology.  

Regardless of how well planned, ontology development should be a cyclical and iterative 

process.  It is recommended that the developer consider the structure of the ontology in 

multiple iterations, similar to the life cycle approach of software development.  An 

example of the life cycle approach for software development is the Boehm’s spiral 

model, shown in Figure 34 (Boehm, 1998, 61).  The model includes all the required 

phases of requirements, analysis, design, coding, testing and operations.   
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Figure 34. Boehm's Development Spiral 

 

The steps outlined below fit into this lifecycle phases.  While this chapter outlines the 

first iteration of the process, developers should expect to follow multiple repetitions of 

the methodology. 

 We propose an ontology development methodology that consists of seven steps.  

Similar to the spiral model, these steps are applied iteratively and the developers may 

find themselves going back to earlier steps to edit their initial work.  The seven steps are 

as follows: 

1. Determine the scope and application of the ontology 
2. List relevant concepts of the domain 
3. Create the class hierarchy 
4. Define properties 
5. Describe classes using property restrictions and complex definitions 
6. Classify ontology with a reasoning tool 
7. Create individuals and fill property values 

Each of these steps will be discussed in detail in the sections that follow.  These steps will 

be used to build the example Geography ontology presented in the previous chapter.  The 
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choice of the Geography domain is based on the fact it is a commonly understood domain 

and thus will help the reader understand the process of building an ontology..   

 
1. Determine the Scope and Application of the Ontology 
This first step is the most important steps of the overall process and determines 

the final outcome of the ontology.  The domain expert must understand well the purpose 

of the ontology.  Often, the purpose of an ontology is two-folds.  If an ontology is to 

represent the knowledge base of a particular domain or segment of a domain, it will 

potentially function to “answer” all general questions relating to that domain.  A second 

reason for developing an ontology is their use as knowledge representations in specific 

applications.  For a given ontology, the requirements for these two goals, to serve as a 

knowledge database for a specific application and as a generic knowledge representation 

model of a particular domain, may be conflicting.  Therefore, the developer must 

compromise the demand for specificity and generality of scope in order to create a useful 

ontology. The developer should carefully manage the scope and depth to develop a 

realistic and coherent ontology that serves the purpose of the application. 

To help developers determine the scope of a given ontology, a series of 

competency questions was developed by Gruninger et al. (Gruninger and Fox, 1995).  

These are questions that the ontology is expected to answer for the application on hand 

and, therefore, these questions can help determine the scope of the ontology.  The list 

should include broad and specific questions, acting as the litmus tests to ascertain the 

necessary level of detail. 

The scope and purpose of the Geography ontology is to define the basic physical 

and political geographies and represent the relationships between them for the purpose of 

using it with OAKDA application, which will mine it to provide meaningful context to 

tailor user web searches.  It should represent the high-level understanding of geopolitics – 

the physical geographic characteristics existing within different types of political entities.  

We will use this example ontology in the sections that follow to demonstrate the 

development methodology of an OWL-DL ontology. 
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Example competency questions that are used to help determine the scope of the 

Geography ontology include the following: 

• Which non-democratic countries are landlocked? 
• What bodies of water border all bi-coastal countries in the northern 

hemisphere? 
• What is the most common climate of island countries? 
• What river runs through the most countries? 
• Which continent has the greatest number of coastal countries? 

These competency questions should be used to guide the development process 

and are applied repeatedly during the phases of the methodology as well as between 

iterations to ensure that the ontology fulfills its purpose. 

2. List Relevant Concepts of the Domain 
Once the scope is broadly defined, this step enumerates, in no particular order, the 

main concepts of the domain of interest.  Although the final ontology may not necessarily 

include all the concepts defined during this phase, the developer should list as many 

relevant concepts as possible.  At this point, one should not be concerned with 

overlapping concepts, the relationships between them, or their properties.  The goal of 

this step is to create a comprehensive list of the concepts of the domain in preparation for 

the subsequent steps of development. 

Although as indicated, the properties and relationships of concepts should not be 

considered in this step, bearing in mind the main properties of concepts and how one 

concept relates to another could generate useful ideas of other related concepts.  Another 

useful technique is to group related concepts into relevant categories.  However, these 

categories should not be too narrow, which introduces difficulties further along in the 

process.  It is important to note that this is still an informal stage of the development, 

where the SME should be more concerned about generating ideas rather than hard-coding 

specific concepts into categories.   

For the Geography example, the relevant concepts of the domain include the 

following: 
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ocean, sea, lake, river, mountain, land, plains, valley, desert, 
tropics, climate, country, government, city, boundary, 
continent, language, ethnicity, latitude, longitude, 
archipelago, coastline, Mexico, South America 

There is no particular order to specifying the list and the concepts were generated 

from the competency questions.  This step provides the input for the next step, which is 

building the class hierarchy.  While not every concept from this stage becomes a class, 

having a large pool of concepts relevant to the domain makes the hierarchy development 

easier.  As in the requirements analysis for software development, the time and thought 

invested into the first two steps of the methodology provide great benefits and rewards 

during the subsequent steps of the methodology. 

3. Create the Class Hierarchy 
This step creates a class hierarchy by relating classes through the subsumption 

construct “is-a” relationship.  An “is-a” relationship indicates that a member of a subclass 

is also a member of the superclass as shown in Figure35. 

 
Figure 35. Simple Class Hierarchy 

 

In the simple class hierarchy of Figure 35, classes ClassA, ClassF and 

ClassI are direct subclasses of owl:Thing8, which is the highest OWL-defined class 

of the hierarchy.  Classes within the same level of the hierarchy are considered sibling 

                                                 
8  As mentioned in the previous chapter, all classes in OWL-DL are subsumed under the parent 

class of owl:Thing.   This implies that all classes are consider subclasses of owl:Thing.  This is an 
important concept to remember as the ontology incorporates properties and domain and range restrictions. 
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classes.  Classes subsumed under other classes are subclasses.  All subclasses have a “is-

a” relationship with their parent or superclass.  Thus, members of ClassB are also 

members of ClassA according to the definition of the is-a relationship between 

ClassA and ClassB.  Similarly, members of ClassD and ClassE are also members 

of ClassB, which in turn are members of ClassA.  It is important to have a firm 

understanding of this parent-child class relationship to avoid problems with the later steps 

of the methodology. 

Organizing the class hierarchy may be accomplished in several ways: top-down, 

bottom-up, or a combination approach [Noy and McGuiness, 2002, 6].  The top-down 

approach starts with the most general set of concepts and works down to the subsequent 

levels of specialization.  For example, the BodyOfLand and BodyOfWater classes are 

identified as the highest level of the Geography ontology hierarchy, and subsequent 

subclasses are subsumed under these two classes.  Thus, Ocean, River, and Lake are 

added as subclasses of BodyOfWater, and Mountain, Desert, and Plains as 

subclasses of BodyOfLand.  The bottom-up approach starts with identifying the most 

specific classes, then grouping them under a parent class.  In the Geography ontology 

example, the developer may start with LandlockedCountry, IslandCountry, and 

BiCoastalCountry classes, which are then grouped as subclasses under the parent 

class of Country.  Similarly, lower level classes such as DryClimate, 

PolarClimate, and TropicalHumidClimate are subsumed under the Climate 

parent class. 

When grouping low-level concepts, developers should carefully differentiate 

between classes and their instances, known in OWL as individuals.  A careful 

examination of the list of concepts generated in step two of the methodology should help 

the developer differentiate classes from their instances.  The distinction between a class 

and an individual is not always clear and often depends on the purpose of the ontology.  

This means that a concept that is a class in one ontology may be more appropriately 

represented as an individual in another.  However, classes are generally “naturally 

occurring sets of things in a domain of discourse” and individuals correspond to real-
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world entities grouped under these classes [Smith et al., 2004, 19].  Classes represent a 

group of similar entities while individuals are the actual occurrences of these entities that 

make up the group.   

In the Geography ontology, PacificOcean is an instance of Ocean rather 

than its subclass since PacificOcean does not represent a group of entities but an 

actual entity itself.  On the contrary, IslandCountry should be a subclass of 

Country rather than its instance since it represents a group of countries with the 

geographic landscape of an island, such as Ireland and Cuba.  It is important to 

emphasize that the distinction between a class and an individual often depends on the 

purpose and scope of the ontology.   

The most common approach to organizing the ontology class hierarchy is the 

combination approach.  This approach develops the class hierarchy by defining the most 

salient terms of the ontology, adding successive classes at the different levels of the 

hierarchy as appropriate.  The advantage of the combination approach is that it allows the 

developer to start anywhere along the hierarchy and move up and down the stratum to 

add new classes as necessary.   

In the Geography ontology, two most salient classes are Country and Ocean.  

Using the combination approach, these two classes are defined at a top level of the 

hierarchy.  Then, new concepts are added as parent classes or subclasses to these two 

initial set of classes.  Furthermore, in line with the iterative development process, the 

hierarchy structure becomes refined as classes are moved from one position within the 

hierarchy to another.  For example, as Figure 36 shows, in the first two iterations 

BodyOfWater and BodyOfLand classes occupied the top level of the hierarchy, as 

sibling to PoliticalGeography and Climate, however in the third iteration of the 

class hierarchy, the two classes fall under the parent class of PhysicalGeography.   
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Figure 36. Progression of the Class Hierarchy                
 

The development of the class hierarchy as described in this step falls under the 

“design” phase of the spiral development cycle.  As the ontology evolves, the developer 

will revisit this step and modify the hierarchy as necessary.  Additional requirements and 

knowledge acquired in the process refines the class taxonomy.  In order to manage the 

constantly evolving ontology, detailed documentation and versioning is recommended. 

 
a. Disjointed Classes 
It is common for developers to make false assumptions about the 

relationship between OWL-DL classes.  Specifically, developers presume that classes 

that do not share a superclass-subclass, or is-a, relationship are automatically disjoint.  In 

OWL-DL, all classes are considered overlapping unless such separation or disjointness is 

made explicit.  Specifying disjointness between classes requires an explicit specification 

using the OWL syntax owl:disjointWith.  Only by defining a class as disjoint with 

others, the developer can assume class mutual exclusivity.  
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In the Geography ontology, disjointness between classes Ocean, 

Mountain, and Country is not assumed.  In other words, according to the current  

specification, Ocean and Mountain classes can share the same individuals.  In order to 

make classes disjoint from one another, disjointness must be specified explicitly using the 

owl:disjointWith statement.   

 

Figure 37. Disjointed Classes 
 

Figure 37 indicates in Protégé that the selected Bay class is disjointed 

from all of its sibling classes, as listed in the bottom right corner box.  Without this 

explicit restriction, OWL does not exclude an individual from belonging to more than one 

class.  Also, the disjoint restriction applies to all the subclasses under the specified class.  

By making BodyOfWater disjoint with BodyOfLand, all the subclasses of 

BodyOfWater are disjoint from all the subclasses of BodyOfLand.   

4. Define the Properties 
After defining the class hierarchy, the next step is to specify the class properties.  

Classes, without any properties or restrictions, have no useful meaning other than how 

Disjoint Classes 
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they relate to each other in the taxonomy.  A property, which is defined at the class level, 

represents the relationship between two individuals, or between an individual and a literal 

string value.  As discussed in the previous chapter, depending on whether it is an object 

property or datatype property, the range value of the property is either an OWL 

individual object or a literal string.  Properties describe the relationships or links between 

real-world objects or values.  Properties are the verb that link the subject and object in the 

RDF triples as explained in Chapter Two.  Although there are properties that are unique 

to a given class, it is more common and recommended that properties be defined 

generically and be applied to classes as appropriate.  That is, a property often applies to 

more than one class.  However, property restrictions can be used to limit the applicability, 

using the domain and range specification. This will be discussed in more detail in Section 

5.C that defines the use of domain and ranges. 

Although properties may be used generically throughout an ontology, the 

developer should start defining them based on the characteristics of the classes.  One way 

of thinking about these characteristics is the verb-object that applies to the class.  For 

instance, for the class Parent, the most obvious property is “has child.”  Likewise, the 

most salient property of the Child class is “has Parent.”  Similar to the technique used 

to define classes, developers should start with the most obvious characteristics of a class 

and iteratively add, change, and refine these characteristics. 

In the Geography example, the characteristics of the Country class include “has 

border”, “has population”, “has capital”, “has language”, “has climate”, “has river”, “has 

lake”, “has mountain”, “ has government”, “has ethnic group”, and others.  As the list 

shows, most these characteristics relate to other classe instances within the ontology.  The 

Country class has a hasCapital property to denote the relationship it has with a 

capital city.  Although the verbs can be arbitrary and are often specified at the discretion 

of the developer, it is advisable to use the most straightforward and direct description of 

the relationship.  For the class characteristics that relate it to a data type, the property 

depicts the class’s relationship to a data string value.  The property hasPopulation 

describes the link between the individuals of class Country and their population value.  

In this case, population is a numeric value that represents the number of people in a 
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particular country.  Figure 38 shows the graphical representation of the difference 

between object oroperty and datatype property. 

 

 
Figure 38. Two Types of Properties 

 

The object property hasCapital denotes the relationship between the individuals of 

Country and the individuals of CapitalCity, which are both OWL objects.  The 

datatype property hasPopulation, however, links the individuals of Country to a 

unique data string value, which in this case is “20,064,776.” 

 A partial list of properties for the Geography ontology is shown in Figure 39.   

 

Figure 39. Geography Properties 
 

OWL-DL ontologies allow the specification of different types of object 

properties.  They include inverse, transitive, symmetric, functional and inverse functional 

properties.  Each of these properties consists of its unique OWL-DL constructs, which is 

RomeItaly 

hasCapital 

Object Property 
“20,064,776” Sri Lanka

hasPopulation

Datatype Property 
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discussed in detail in the sections below.  It is important for the developer to correctly 

identify the type of property and specify it in the ontology. 

a. Inverse Properties 
Properties having an opposite relationship to one another are known as 

inverse properties.  An inverse property is denoted using the OWL syntax, 

owl:inverseOf, a subproperty of owl:ObjectProperty, to indicate a diametric 

relationship to the specified inverse property.  Generally, a property denotes a one-

direction relationship from subject to object, such as IndividualA “isParentOf” 

IndividualB.  Logically, isParentOf property, by itself, reveals no information 

about whether there is a corresponding relationship in the other direction.  Developer can 

create another property, called isChildOf, to assert an opposite relationship from 

IndividualB to IndividualA, by designating the property as the inverse property 

of isParentOf. 

Consider the Geography example in Figure 40. 
 

Figure 40. Inverse Property 
 

The selected hasCountry property is an inverse property of hasCity, 

which is shown under the “Inverse” specification slot.  If an individual has a 

Inverse Property Inverse Property 
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hasCountry property value filled by another individual, then by the rule of inverse 

property those two individuals also have an opposite relationship via hasCity property.  

That is, if the individual Venice, an instance of the City class, has the hasCountry 

property value of Italy, an instance of Country, Italy will automatically have the 

hasCity property value of Venice as shown in Figure 41.  

 

          
 

Figure 41. Individual Attributes of Inverse Properties  
 

When using the inverse property, the domain and range axioms should be 

carefully considered.  Although the inverse property example shown in Figure 8 has the 

domain and range defined, it is equally valid to leave them undeclared, which defaults to 

the highest class owl:Thing.  In fact, if domain and ranges specification are not 

compatible between inverse properties, it may cause an error in the ontology and lead to 

unintended consequences. 

b. Transitive & Symmetric Properties 
Similar to the inverse property, transitive and symmetric properties are 

subclasses of owl:ObjectProperty and they assert information about the 

relationship of the individuals related by these properties.  A transitive property is 

commonly used to represent “part-whole” relationships.  That is, if transitive property PT 

links individuals X and Y as well as individuals Y and Z, then it is inferred, by the rules of 

Inverse Properties
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transitivity, that PT relates X to Z.  Figure 42 shows how Protégé defines transitive and 

symmetric properties. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 42. Transitive  & Symmetric Properties  
 

In the Geography ontology, the locatedIn is a transitive property and it 

is applied the individuals VaticanCity, Rome, and Italy.  That is, if 

VaticanCity is “locatedIn” Rome and Rome is “locatedIn Italy”, then by 

the rule of transitivity, VaticanCity is “locatedIn” Italy.  While this 

implication is not explicitly stated in OWL or visible in Protégé, the inferred relationship 

is made transparent when the ontology is used to make reasoning decisions.  Inference 

engines, such as RacerPro, read the OWL syntax and make the implied link as defined by 

the transitive property. 

A symmetric property, on the other hand, allows the individuals to have a 

reciprocal or a bi-directional relationship.  Unlike the inverse properties, a symmetric 

property is one relationship that is applied in both directions as shown in Figure 43. 

Transitive Property 

Symmetric Property 
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Figure 43. Difference between Inverse and Symmetric Properties 
 

Figure 43 shows the difference between inverse and symmetric properties.  

The isParentOf property and isChildOf properties denote opposite relationships, 

making them inverse properties.  However, the symmetric property isSiblingOf 

allows the relationship to be bi-directional, allowing the subject to be the object and vise 

versa.   

In the Geography ontology, an example of symmetric properties is 

adjacentTo.  When individual A is adjacentTo individual B, then by rule of 

symmetry, individual B is adjacentTo individual A.  Specifically, if individual 

Mexico is adjacentTo UnitedStates, then it is inferred that UnitedStates is 

adjacentTo Mexico. 

c. Functional & Inverse Functional Properties 
A functional property indicates that, for a given individual, there can be at 

most one property value associated with that individual.  For a functional property PF, 

individual X is associated with at most one property value of individual Y.  However, if 

PF links X with another value, say individual Z, then by the rule of functional property, 

individual Y must equal individual Z.  In other words, they are the same object or value 

with two separate instantiations.   

Consider the example of Figure 44 from the Geography ontology.  In this 

example, the property hasCapital is a functional property.   

isChildOf 

isParentOf 
John Jenny

Inverse Properties 

IsSiblingOf 
Jenny Jack

Symmetric Property 
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Figure 44. Attributes of a Functional Property 

 

The individual UnitedStates is associated with two different 

hasCapital values, namely DistrictOfColumbia and WashingtonDC.  

However, since functional property must only have one value associated with a given 

individual, it must be inferred that these are equal objects.   

Similar to inverse property, inverse functional property denotes an 

opposite relationship to its “inverse-of” property, which is a functional property.  Since 

functional property is restricted to one property value, the same is applied to the inverse 

functional property.  For an inverse functional property PIF, if individuals X relates to 

individual Z and individual Y also relates to Z, then it is assumed that individual X equals 

to individual Y.  An example of the inverse functional property from the Geography 

ontology is belongsToCountry property as shown in Figure 45.   

Figure 45. Attributes of an Inverse Functional Property 
 

Figure 45 shows the values DistrictOfColumbia and WashingtonDC are both 

associated to UnitedStates by belongsToCountry property.  By the rules of 

inverse functionality, it is inferred that these are equal and they are two instantiation of 

the same value.   

hasCapital
Washington 
D.C. 

District of 
Columbia 

United 
States 

hasCapital Since hasCapital is 
a functional property, 
these two individuals 
must be the same.

belongsToCountry 

Washington  
D.C. 

District of 
Columbia 

United 
States 

belongsToCountry 

The inverse functional 
belongsToCountry   
property implies that 
these two are the same. 
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  Figure 46 shows how the functional and inverse functional properties are 

designated in Protégé.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 46. Functional and Inverse Functional Properties 
 

Figure 46 shows that the definition of hasCapital, which is a 

functional property, specifies that it has an inverse functional property relationship to 

isCapitalOf.  Once two properties are linked by the inverse-of construct, the 

specification only needs to be stated once; in this case the isCapitalOf property 

definition will automatically show that it has an inverse functional relationship with 

hasCapital. 

5. Describe Classes Using Property Restrictions and Complex 
Definitions 

Once properties are defined, they are used to restrict and describe classes.  In 

order to associate a property with a class definition, it must be used as part of the class 

restriction.   There are three types of class descriptions in OWL-DL, namely enumeration, 

property restriction, and complex class definition.  First, enumeration describes a class by 

exhaustively listing all of its members or instances in its definition using the OWL 

construct owl:oneOf.  No other members, other than those listed under the definition 

can belong to the class.  Second, there are two types of property restrictions, quantifier 

Functional Property 

Inverse Functional 
Property 
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(or value) and cardinality.  The quantifier restrictions constrain the range value of the 

property when applied to the class definition.  The cardinality restrictions constrain the 

number of property values the class instance is allowed.  And third, complex class 

descriptions are defined using logical operators of intersection (AND), union (OR) and 

complement (NOT) of classes.  They represent advanced class logic of OWL-DL.  Along 

with describing the restrictions in detail, there are two OWL-DL concepts, the difference 

between universal and existential restrictions and understanding “open world” vs. “closed 

world” assumption, that frame the types of restrictions used for class descriptions.   These 

will be discussed in detail below. 

a. Universal and Existential Restrictions 
One of the most common errors when using property restrictions to 

describe classes is the differentiating between universal and existential restrictions.  

Without understanding the meaning and implications of these two restrictions, it is likely 

that many developers will use the wrong restriction.  To constrain the range value of a 

property, an existential restriction (someValuesFrom) should be used rather than a 

universal restriction (allValuesFrom).  The existential restriction, denoted with the 

symbol "∃", states that the individuals of the class being defined must have at lease one 

property relationship with the specified range of individuals.  In other words, if a property 

restriction for ClassX is "∃ PropertyE ClassY", then every individual of ClassX 

have at least one PropertyE relationship with an individual of ClassY.  By this 

definition, however, it is possible to for individuals of ClassX to have PropertyE 

relationship with individuals of other classes as long as it satisfies the “at least one” 

requirement. It does not restrict the individuals to have PropertyE relationship with 

only the individuals of ClassY.  On the other hand, universal restriction, denoted with 

the symbol "∀", states that individuals of the class being defined must have all of their 

property relationships with the specified range of individuals.  For ClassX with a 

property restriction of "∀ PropertyU ClassY", if individuals of ClassX have any 

PropertyU relationship, it must be with individuals of ClassY.  However, it is 

possible for individuals of ClassX to not have any PropertyU values.  Unlike the 
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existential restriction, universal restriction does not require the individuals to have any 

property relationship with a defined set of objects.    

In description logic, existential restrictions are used to limit the property 

range, requiring every individual of that class to have at least one property value from the 

specified range.  In defining the Country class, the property containsFeatures 

uses the existential restriction someValuesFrom as shown in Figure 479.   

 
Figure 47. Existential Restriction in OWL 

 

The existential restriction, "∃ containsFeature BodyOfLand", 

requires that at lease one of the Country individual have a containsFeature 

property value from the individuals of BodyOfLand.  As long as that requirement is 

satisfied, individuals of the Country class may have containsFeature property 

value from individuals from other classes, as shown in Figure 48.   

 
Figure 48. Existential Restriction Example 

 

If the Country class was defined by a universal restriction, the 

allValuesFrom semantic is used to constrain the class description (Figure 49).   

                                                 
9 The “translation” is the English paraphrasing of the OWL-DL semantics stated in the examples.   

OWL: 
Class (Country)  Subclass of PoliticalGeography 
Restriction (containsFeatures someValuesFrom BodyOfLand) 
 
Translation: 
Country class contains, amongst other things, some form of BodyOfLand 

containsFeatures

containsFeatures

containsFeatures

containsFeatures

containsFeatures

Individuals of 
Country 

Individuals of 
BodyOfLand 
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Figure 49. Universal Restriction in OWL 

 

The universal restriction, "∀ containsFeature BodyOfLand", requires 

that if an individual of Country has a containsFeature property value, it must be 

an individual of BodyOfLand.  However, this restriction does not require all of 

Country individuals to have a containsFeature property value.  Unlike the 

existential restriction, individuals may not be associated with any containsFeature 

relationships.  This is shown in figure 50. 

 
Figure 50. Universal Restriction Example 

 

Developers should be clear about the appropriate type of property 

restrictions that should be applied to the class definitions.  If the wrong restriction is 

applied to the class, there will be unforeseen consequences when the ontology is 

inferenced and affect the overall validity of the ontology.     

b. Open World vs. Closed World 
Most ontology developers, unfamiliar with open world reasoning of OWL, 

fail to make negation explicit.  Databases, logic programming and frame languages are 

“closed world reasoning" systems which assume that when something is not found, it is 

false.  However, description logic based languages, such as OWL-DL, associate negation 

OWL: 
Class (Country) Subclass of PoliticalGeography 
Restriction (containsFeatures allValuesFrom BodyOfLand) 
 
Translation: 
Country class contains, amongst other things, some form of BodyOfLand

containsFeature

containsFeatures

containsFeature

Individuals of 
Country 

Individuals of 
BodyOfLand 
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with “unsatisfiability.”  That is, falsification can only be proven if contradicting 

information is made explicit.   

Consider the IslandCountry and LandlockedCountry class 

definitions in Figure 51.   

 
Figure 51. Definitions of IslandCountry and LandlockedCountry 

 

Intuitively, developers will define the classes IslandCountry and 

LandlockedCountry as stated in Figure 51.  When a developer uses the existential 

restriction statement someValuesFrom, to restrict the property value, it leaves the 

definition open to other assumptions, as expressed by the translation “amongst other 

things."  That is, these definitions are open to interpretation that the individuals can have 

property values other than what was specified with the someValuesFrom restrictions.  

Although these definitions are not technically invalid and do not cause problems by 

themselves, complications occur when you introduce other classes, such as 

ArchipelagoCountry, to the ontology.  Consider the definitions in Figure 52. 

 

 

OWL: 
Class (IslandCountry) Subclass of Country 
Restriction (hasLandType someValuesFrom Island) 
Restriction (hasBorder someValuesFrom Ocean) 
 
Translation: 
IslandCountry is any country that has, amongst other things, some land type of Island and some 
border of Ocean. 

OWL: 
Class (IslandCountry) Subclass of Country 
Restriction (hasLandType someValuesFrom Island) 
Restriction (hasBorder someValuesFrom Ocean) 
 
Translation: 
IslandCountry is any country that has, amongst other things, some land type of Island and some 
border of Ocean. 

OWL: 
Class (LandlockedCountry) Subclass of Country 
Restriction (hasBorder someValuesFrom Country) 
complementOf (restriction (hasBorder someValueFrom Ocean)) 
 
Translation: 
LandlockedCountry is any country that has, amongst other things, some border of Country and does 
not have some border of Ocean. 
 

OWL: 
Class (IslandCountry) Subclass of Country 
Restriction (hasLandType someValuesFrom Island) 
Restriction (hasBorder someValuesFrom Ocean) 
 
Translation: 
IslandCountry is any country that has, amongst other things, some land type of Island and some 
border of Ocean. 

OWL: 
Class (LandlockedCountry) Subclass of Country 
Restriction (hasBorder someValuesFrom Country) 
complementOf (restriction (hasBorder someValueFrom Ocean)) 
 
Translation: 
LandlockedCountry is any country that has, amongst other things, some border of Country and does 
not have some border of Ocean. 
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Figure 52. Definitions of Archipelago and ArchipelagoCountry 

 

Based on the specifications of Archipelago and 

ArchipelagoCountry, it may seem appropriate that ArchipelagoCountry class 

be subsumed under IslandCountry class, since Archipelago is a subclass of 

Island.  However, given the open definition of IslandCountry, as shown in Figure 

19,  ArchipelagoCountry will not be inferred or classified as an 

IslandCountry.  The current definition of ArchipelagoCountry, described by 

the existential property restriction of someValueFrom, does not preclude the class 

from having a land type of something other than an Archipelago.  Thus, 

ArchipelagoCountry can take on any form of land type and be classified as a 

LandlockedCountry as likely as any other type of country in the ontology.   

Based on the definition shown in Figure 20, open world reasoning makes 

no assumptions about the land type of the ArchipelagoCountry class simply based 

on the fact that other land type information was absent from the definition.  In order for 

this class to be classified as a subclass of IslandCountry, as is the intention of the 

developers, it must explicitly exclude of all other land types in the class definition.   This 

is accomplished by including a further restriction known as a closure axiom.  According 

to Horridge et al., "[a] close axiom on a property consists of a universal restriction that 

OWL: 
Class (ArchipelagoCountry) Subclass of Country 
Restriction (hasLandType someValuesFrom Archipelago) 
 
Translation: 
ArchipelagoCountry is any country that has, amongst other things, some land type of 
Archipelago. 

OWL: 
Class (Archipelago) Subclass of Island 
Restriction (cardinality >2 Island) 
 
Translation: 
Archipelago is any island that consists of, amongst other things, at least two islands. 
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acts along the property to say it can only be filled by the specified fillers [Horridge et. al., 

2004, 70].  The restricton has a filled that is a union of the fillers that occur in the 

existential restriction for the property."  That is, closure axiom adds the universal 

restriction allValuesFrom to the existing existential restriction to exclude other 

possible assumptions in the class definition.  Hence, it closes the class definitions to other 

interpretations, as shown in Figure 53.                                                                                                                 

 

 
Figure 53. New Definition of ArchipelagoCountry 

 

By applying the closure axiom, the definition of 

ArchipelagoCountry is no longer open or ambiguous.  As written under the 

translation, the allValuesFrom specification adds the restriction “only” to the 

definition, disallowing the hasLandType property from including any individuals other 

than those belonging to the Archipelago class.  The closure axiom should be applied 

to all classes where such quantifier property restrictions apply; otherwise, inferencing 

tools cannot properly classify the classes.  Hence, classes IslandCountry and 

LandlockedCountry should also include closure axioms as shown in Figure 54.  

 

 

 

 

 

 

OWL: 
Class (ArchipelagoCountry) Subclass of Country 
Restriction (hasLandType someValuesFrom Archipelago) 
Restriction (hasLandType allValuesFrom Archipelago) 
 
Translation: 
ArchipelagoCountry is any country that has, amongst other things, some land type of Archipelago and 
only land type of Archipelago. 
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Figure 54. New Definitions of IslandCountry and LandlockedCountry 

 
c. Domain and Range 
Each property has an associated domain and range as part of the property 

definition.  When the property is initially created, its domain and range defaults to OWL's 

highest level class, the owl:Thing class.  However, the developer may change the 

domain and range to other values.  As mentioned in the previous chapter, the domain of a 

property associates the property with the class(es) it modifies and asserts that the subjects 

of such property statements must belong to the instance of the class.  The range is the 

specified set of values, either class(es) or data string, that the property is allowed to take 

as its value.  For an object property, the property links the individuals of the domain class 

to the individuals of the range class.  Unlike the quantifier restrictions, domain and range 

are global axioms that are applied wherever the property is used, rather than only at the 

class description level.   

If the Geography ontology's hasCapital has a domain of Country 

and range of CapitalCity, then this property is intended to connect the individuals of 

OWL: 
Class (IslandCountry) Subclass of Country 
Restriction (hasLandType someValuesFrom Island) 
Restriction (hasLandType allValuesFrom Island) 
Restriction (hasBorder someValuesFrom Ocean) 
Restriction (hasBorder allValuesFrom Ocean) 
 
Translation: 
IslandCountry is any country that has, amongst other things, some land type of Island and some 
border of Ocean and only land type of Island and only border of Ocean. 

OWL: 
Class (LandlockedCountry) Subclass of Country 
Restriction (hasBorder someValuesFrom Country) 
Restriction (hasBorder allValuesFrom Country) 
complementOf (restriction (hasBorder someValueFrom Ocean)) 
complementOf (restriction (hasBorder allValuesFrom Ocean)) 
 
Translation: 
LandlockedCountry is any country that has, amongst other things, some border of Country and 
does not have some border of Ocean and only has border of Country and never has border of Ocean.
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Country to the individuals of CapitalCity whenever the hasCapital property is 

used as a restriction.   

When specifying an object property, it is important to define the range 

type of “instance,” rather than “class,” which is the other possible option in OWL (Figure 

55).  Developers commonly mistake the range values of a property to be the class objects 

themselves, rather than the individual(s) that belong to that class.  By choosing “class” as 

the range type, OWL will treat the class as an individual creating a type of “meta-

statement” allowed only in the OWL-Full sublanguage. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 55. Selecting the Property Range Type 

 

Range of an object property may consist of individuals from more than 

one class.  If propertyP has a range of individuals from ClassA and ClassB, then the 

possible values of propertyP include all the individuals, or the union, of Class A and 

Class B.  In the Geography ontology, the property hasJurisdiction is a property 

that links the individuals of the Government class to the individuals of both City and 

Country classes, via the property.  When multiple classes are designated as the range, 

the OWL represents the range values as the union of classes, in this case the individuals 

that are either individuals of City or individuals of Country.  

Select the “type” of 
range value 



 

 76

In OWL, domain and range constraints are axioms10 used for reasoning, 

rather than binding restrictions of the property.  Therefore, misusing the constraints can 

cause significant errors and create unintended consequences when the ontology is 

classified or inferenced.  Consider the example the hasBoundary property.  The 

property’s domain is BodyOfLand and range is the union of Latitude and 

Longitude classes.  However, no error is raised when this property is used to describe 

the relationship between individuals of the class Country and the individuals of 

Ocean, even though Ocean is not part of the specified range.  If Brazil, an individual 

of Country, applies the hasBoundary property to associate with AtlanticOcean, 

an individual of Ocean, the OWL statement will reads  “Brazil hasBoundary 

AtlanticOcean.”   Although this relationship does not cause an error by itself, the 

problem occurs when the ontology is classified.  Since hasBoundary property has 

defined domain and range axioms, BodyOfLand and union of Latitude and 

Longitude respectively, and since that does not align with the property applied to 

individuals of Country and Ocean, the classifier will make inferences based on the 

domain and range specification.  In this scenario, the classifier will infer that Country 

is a subclass of BodyOfLand and Ocean is a subclass of Latitude and 

Longitude.  Furthermore, if Ocean is defined as disjoint from Latitude or 

Longitude in its class definition, then OWL will raise an error because disjointed 

classes cannot have a superclass-subclass relationship.  This unintended result of class 

subsumption is an error that can be avoided if the developers fully understand the 

consequences of designating the property domain and range.  For most developers, it is 

recommended that they do not specify the domain and range, reducing the chances of 

serious errors in the ontology.  

 
d. Primitive and Defined Classes 
Unlike other languages, OWL differentiates between “primitive” and 

“defined” classes.  Primitive classes, also referred to as “partial classes,” are those 

defined only by necessary conditions or restrictions.  Defined, or “complete” classes, 
                                                 

10 Axioms are general statements or assumptions accepted as true without demonstrated proof.   
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have at least one necessary and sufficient condition.  The difference between a primitive 

and defined class is the level of completeness associated with the class definition.  

Reasoning tools can base their classification inferences only on defined or complete 

classes; no definitive conclusions can be made on primitive classes.   

In the Geography ontology, CoastalCountry is a defined class 

because it contains necessary and sufficient conditions as part of the class specification as 

shown in Figure 56.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 56. Defined Class Example 

 

The necessary and sufficient conditions of the CoastalCountry class 

imply that any class that is country and has a land type of Coastline, amongst other 

things, is, by definition, a CoastalCountry.  If this class was defined as primitive, 

with necessary conditions only, such unambiguous inference cannot be made.  The 

primitive restrictions are insufficient to infer that the satisfaction of these conditions 

implies that it is the named class.  It is crucial for developers to understand that unless 

classes are complete, using necessary and sufficient conditions, the classifier does not 

attempt to inference class subsumption.  While the primitive class can only define its 

conditions, defined class are also defined by them.  This difference is shown in Figure 57. 

Necessary & 
Sufficient Conditions 
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Figure 57. Necessary vs. Necessary & Sufficient Conditions 

 

The OWL construct used to indicate the defined class condition is 

owl:equivalentClass.  As mentioned in the previous chapter, this construct states 

that the class being defined has the same description, or list of individual members, as the 

conditions specified under the owl:equivalentClass tag.  The necessary and 

sufficient definition of CoastalCountry using owl:equivalentClass is shown 

in Figure 58. 

 
Figure 58. Definition of CoastalCountry in OWL  
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CONDITION 
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  <owl:Class rdf:ID="CoastalCountry"> 
    <owl:equivalentClass> 
      <owl:Class> 
        <owl:intersectionOf rdf:parseType="Collection"> 
          <owl:Restriction> 
            <owl:onProperty> 
              <owl:ObjectProperty rdf:about="#hasLandType"/> 
            </owl:onProperty> 
            <owl:allValuesFrom rdf:resource="#Coastline"/> 
          </owl:Restriction> 
          <owl:Restriction> 
            <owl:onProperty> 
              <owl:ObjectProperty rdf:about="#hasLandType"/> 
            </owl:onProperty> 
            <owl:someValuesFrom rdf:resource="#Coastline"/> 
          </owl:Restriction> 
          <owl:Class rdf:about="#Country"/> 
        </owl:intersectionOf> 
      </owl:Class> 
    </owl:equivalentClass> 
  </owl:Class> 
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Classifiers cannot make assumptions about class subsumptions without the 

“necessary and sufficient” descriptions that makes classes complete.  OWL ontology 

experts argue that developers do not sufficiently understand the importance of defined 

classes and wherever applicable, many classes should have a complete definition 

[Horridge, 2004, 57].  

 
e. Complex Classes: Proper use of Logical Operators “AND” & 

“OR” 
Complex classes are built from joining simpler classes using logical 

operators such as “AND” (∩) and “OR” (∪).  Complex classes are named classes, but 

with their restrictions stated under an anonymous class declaration.  A class created using 

the AND (∩) operator is an intersection class.  An intersection class combines two or 

more classes, using an anonymous class description that restricts the individuals to the 

members of the intersection of these classes.  A complex class created using the OR (∪) 

operator is a union class.  While the intersection class is made up of only the member 

belonging to all classes specified, a union class encompasses all the members of the 

classes included in the union, as diagramed in Figure 59.   

 
 
 
 
  
 
 
 

 
 

Figure 59. Intersection Class vs. Union Class 
 

The application of intersection and union operators are commonly misused 

because the logical conjunction and disjunction do not intuitively correspond with the 

linguistic use of “and” and “or.”  The English statements such as “Name all the political 

Women Men City Country 

Union Class Intersection Class 

CityState People 
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geography entities that are city and country,” does not make it distinctly clear whether it 

refers to entities that are simultaneously city and country, or both entities that are city and 

entities that are country.  In its logical use, AND refers to the intersection, which make up 

the subsection, including members that belong to every intersected class.   

The Geography ontology example of an intersection class is CityState 

(City∩Country).   This class is defined in a way that the members must belong to 

both the City and Country classes; they are simultaneously individuals of City and 

individuals of Country.   

A union class, with the logical use of OR operator, contains all the 

members of each class included in the union.  In the Geography ontology, the People 

class is a union class, (Men∩Women).  Members of the People class include all the 

individuals of Men and all the individuals of Women.   

 
6. Classify Ontology with a Reasoning Tool 
One of the main advantages for developing an OWL-DL ontology is its 

compatibility with classification or inferencing tools.  These tools validate and find new 

classifications of the class hierarchy based on the class descriptions.  The inferred 

classifications provide the developers with error-checking as well as recommendations on 

how the classes should be organized.  This is tremendously valuable, especially with a 

large and complex ontology, because it allows the developers to verify the consistency of 

the class descriptions with the overall schema of the ontology.  It is recommended that 

after every iteration of class descriptions, the developer should invoke the classifier to 

check the validity of the definitions.  Classification tools, such as RacerPro, output any 

errors or inconsistencies they find in the ontology.   

Classifiers are also important for identifying multiple class inheritances.  Multiple 

inheritance occurs when a class belongs to more than one superclass.  When this happens, 

the inheriting class takes on the characteristics of all of its parent classes.  Based on 

necessary and sufficient conditions of the classes, RacerPro finds classes that should be 

subsumed under more than one class.  Although it is possible for the developers to 

designate multiple inheritance classes manually, it is recommended that the they create a 
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simple class hierarchy and let the classifier infer the multiple inheritances based on the 

class descriptions.  It is argued that this method allows for a more manageable and 

modular ontology, which minimizes errors and maximized reuse of the ontology 

[Horridge et. al., 2004, 69]. 

Using Protégé as the ontology editor, the Geography ontology can be classified 

using RacerPro as the backend reasoning engine.  Figure 60 shows the developer’s 

ontology before classification.   

 

 
Figure 60. Ontology Before Racer Classification 

 

The ontology, shown in Figure 60, consists of primitive and defined classes, 

differentiated by the yellow and orange icon colors respectively.  The goal of classifying 

the ontology, based on the conditions and restrictions of the user-defined classes, is to 

find inferred relationship.  This is especially important as an ontology grows in size and 
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complexity.  However, even when an ontology is relatively simple, RacerPro finds and 

checks the common classification errors made by developers.   

When the Geography ontology is classified, RacerPro finds the errors as shown in 

Figure 61.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 61. Ontology After Racer Classification 
 

According to RacerPro’s inferencing engine, the user-defined Geography 

ontology, represented under “Asserted Hierarchy,” has three classification errors.  First, 

RacerPro infers that CityState, which was defined above as an intersection of two 

classes, City∩Country, has multiple inheritances; CityState is a subclass of both 

City and Country.  RacerPro infers that the since the complex class description, the 

intersection of two classes, is defined as a necessary and sufficient condition, is should be 

Reclassificatio
n of 

Reclassification of 
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subsumed under City and Country classes separately.  RacerPro’s second and third 

inference results state that the Men and Women classes should be subsumed under, rather 

than being siblings of, the People class.  Like the CityState example, the class 

description of People is complete or defined, implying that the satisfaction of the class 

conditions infers equivalence with the class itself.  Since the People class is defined as 

a union class, Men∩Women, all the individuals of these two classes also belong to the 

People class. 

7. Create Individuals and Fill Property Values 
OWL instantiates the ontology classes by creating individuals.  Individuals 

represent the actual real-world entities of the interested domain that the ontology is 

attempting to categorize and link by property relationships.  Furthermore, as shown 

throughout this chapter, individuals are used as part of class description and restrictions.  

As stated in Chapter Two, there are specific OWL constructs used to denote semantics of 

individuals, such as owl:hasValue, owl:sameAs, and owl:differentFrom.  

Likewise, individuals are used to define enumerated classes using owl:oneOf. 

Many individuals that are included in an ontology are determined early in the 

development process, when the domain concepts are informally listed in Step Two of the 

development methodology.  The concepts that were at the lowest level of specification, or 

cannot be grouped as a class, become the individuals.  Unlike the other entities of an 

ontology, such as classes and properties, individuals are the actualization or instantiations 

of the descriptions.  In the Geography ontology, some of the concepts appropriate as 

individuals are Italy, France, Mexico, Rome, VaticanCity, PacificOcean, 

GangesRiver, MtVesuvius and LakeOntario. 
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Figure 62. Example of the Individual Florence 

 

Figure 62 shows the list individuals of the City class.  For each individual, there 

is an associated list of properties specified in the class definition.  These property values 

are determined within the individual description, as shown in the Protégé editor window.  

Since properties denote relationships between individuals, or between an individual and a 

datatype string, the developer inputs these values at the individual instantiation stage of 

the developments.  For example, the individuals of the City class have the 

containsPhysicalGeography, adjacentTo, locatedIn, and 

hasPopulationCount property values to be filled as part of the individual 

instantiation.  The instance Florence fills those properties slots with the appropriate 

values as specified in Figure 62.   

Although this step is the least difficult step of development stages, it is the most 

time consuming.  Depending on the domain and scope, the number of individuals can 

grow tremendously large.  However, as long as the schema of the ontology is fully 

developed and structurally valid, managing the individuals should not pose a challenge. 

 
 
E. OTHER CONSIDERATIONS FOR ONTOLOGY DEVELOPMENT 

OWL allows an ontology to import other ontologies.  In the famous Wine 

ontology, the creators import the Food ontology to describe and pair the various types of 

Individuals 

Properties

Meta Data 
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wine with food.  By importing the Food ontology, the developers are able to make use of 

all the Food classes, properties, individuals, and axioms as part of the Wine ontology and 

as part of the Wine class descriptions.  Developers can also extend the imported ontology 

by adding further description of the Food classes.  It is important to understand the 

difference between ontology reference and importing.  References to other ontologies are 

commonly made using namespaces, such as rdf and rdfs, but the references do not 

allow the user to manipulate the objects of these ontologies.  Importing allows the 

developer to have access to all of the axioms and objects of the ontology that are 

unavailable by reference.  Furthermore, OWL imports are cyclic in that Wine ontology 

can import the Food ontology and the Food ontology can import the Wine ontology.   

Ontology imports are integrated to the existing ontology using namespaces similar 

to references.  The namespace is associated with the URL, where the ontology is located.  

The Geography ontology imports the countries.owl ontology, which lists the ISO 

3166 country codes, available through Protégé ontology library.11  This URL for this 

ontology is http://www.bpiresearch.com/BPMO/2004/03/03/cdl/Countries, which serves 

as the default namespace (Figure 63).   

 
Figure 63. Importing Ontologies with Protégé 

 
                                                 

11 Contributed by Dieter E. Jenz, Jenz & Partner GmbH, http://www.jenzundpartner.de/index.html. 
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The namespace URL has a # sign attached to it as a separation marker between 

the URL and the entities within the ontology.  The namespace, which uniquely identifies 

the imported ontology, is associated with every entity of the imported ontology.  

However, rather than including the long URL with every class, property and individual, a 

prefix is used in its place.  In this case, the prefix "country" will be used as the 

namespace.  Once the Country ontology is imported, all the entities are “visible” to the 

geography ontology, as shown in Figure 64. 

 

                                                  
Figure 64. Classes and Properties from Imported Ontology 

 

Figure 64 shows the imported ontology has a prefix associated with every class 

and property.  Now these objects can seamlessly be integrated into the Geography 

ontology as class descriptions and even take on extensions unique to this ontology. 

 
F. CONCLUSION 

This chapter provided a methodology for developing an OWL-DL ontology.  The 

recommended seven steps approach, described above, should be used as a guide for 

SMEs to build an ontology in their areas of expertise.  As emphasized earlier, since the 

scope and application of the ontology determines the content and structure of the 

ontology, a significant effort should be spent on understanding the goal of the ontology, 

as described in step one.  Once that is defined, informally listing the relevant terms of the 

Imported Ontology 
Designated with Prefix 
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domain, step two, is the best method to finding the appropriate class objects of the 

ontology.  Step three organizes those concepts into the class hierarchy.  It is important at 

this stage to understand the difference between classes and individuals as well as the 

relationship of subclasses.  Next, define the properties of the domain, as described in step 

four.  OWL offers multiple property constructs.  Understanding the semantics of these 

types of property and the kinds of relationship they imply are important in creating a rich 

ontology.  Step five involves using these properties and other constructs to restrict and 

describe classes.  Developers are advised to avoid common errors by using existential 

restriction as the default and using closure axioms to further limit the class definition.  

Likewise, it is important to remember that OWL is a language with open world 

reasoning.  All necessary description should be stated explicitly.  This step also explains 

the difference between primitive and defined classes.  Classes are categorized as defined 

only when they use necessary and sufficient conditions as part of their descriptions.  

Once the classes completely defined, classification engine is used to inference the 

ontology, as stated in step six.  It is at this stage where ontology validity and consistency 

are checked using an inferencing tool such as RacerPro.  And finally, step seven 

describes how individuals are instantiated.  They represent the real-world entities of the 

ontology's domain, rather than their abstractions.   

Although these seven steps were described linearly, the development process is 

iterative, as in the spiral model.  It is likely, and even recommended, that the developer 

move forwards and backwards through the steps as necessary to improve and modify the 

ontology.  And like other systems, success of an ontology depends on good management 

and maintenance.  The structure of an OWL ontology makes it suitable for maintenance 

and updates. 

Given the difficulty of modeling real-world domain and knowledge into abstract 

ontological model, developing any ontology is a challenge.  However, with a thorough 

understanding of OWL semantics and detailed planning of the development process, 

SMEs and others developers can build a useful knowledge representation system.  
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IV. ONTOLOGIES AS KNOWLEDGE BASES 

A. INTRODUCTION 
We define an effective search as one which returns to the user a set of highly 

relevant results. Using the appropriate keyword(s) is essential for successful research 

when performing a conventional internet search. Very broad keywords will result in a 

large number of hits, many of them useless. In order to take advantage of currently 

available search engines to return topic-specific results, a highly relevant list of keywords 

and phrases needs to be formed. To develop such a list, users need to have access to 

knowledge of the domain of context.  An ontology, which is model of a domain of 

context, can support the identification of precise and relevant keywords.   

The Ontology-Aided Knowledge Discovery Assistant (OAKDA), pronounced 

"Oak D-A," developed as part of this thesis is an application that attempts to assist users 

to improve their Web searches by providing domain context to the search word or phrase. 

By navigating the ontology, users are assisted in finding a relevant set of key terms that 

will aid the search engines in narrowing, widening, or refocusing a Web search. The aim 

is to enhance the relevance and precision of the returned results through the use of a 

context provided by ontologies associated with each search.  Additionally, in the process 

of mining the ontology, the users can discover knowledge about the concept of interest 

and other related terms in the domain.  This chapter focuses on the purpose and 

motivation for the OAKDA and how ontologies can be used to augment the tools used to 

manage the vast amount of information and resources available in the Web. 

 

B. MOTIVATION FOR USING ONTOLOGIES 

An ontology can be defined as a formal explicit description of concepts in a 

domain of discourse, properties of each concept describing various features, attributes of 

the concept, and restrictions on these properties that are specified by semantics, or rules, 

that follows the “rules” of the domain of knowledge (Ushhold et al., 1996, X). For these 

reasons, ontologies may have use as knowledge bases (KB) for an application attempting 

to add context to a particular search word or phrase. By navigating the ontologies, users 
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can understand the context of a particular concept as well as the relationships it has with 

other concepts.  Interest in the use of ontologies as knowledge bases is growing rapidly. 

If the availability of these ontologies increases, their importance may become more 

significant. Since no one ontology can cover all aspects of a domain and no two 

ontologies of the same domain will be the identical, users receive greater value by 

accessing as many ontologies as possible. Similarly, ontology developers can benefit 

from each other since ontologies can be built on top of others, expanding the breath and 

depth of any domain.  Once developed, ontologies can be widely distributed and shared 

and used by both people and application systems.  This scenario is what makes ontologies 

potentially very valuable. 

 The fundamental purpose of an ontology is to improve the ability of humans and 

machines to make judgments about data.  Humans obtain and process information by 

reading the written word, whether on paper or on a computer screen.  Our understanding 

of how humans decipher and process written language is not well understood and 

consequently, we've not managed to endow our machines with the same capabilities.  

Therefore, when machines require information, it must be in a language and structure that 

can be understood by them.  This is where ontologies are valuable by providing a method 

of translation.  Undoubtedly, there is something lost in the translation for humans.  

Ontologies require people a good visualization strategy to be more easily accessible.  For 

human beings, ontologies are more limited in terms of their descriptive power as 

compared with prose but can be useful in certain situations to provide a succinct 

overview and hierarchy of a domain. 

Regardless of the growing variety of applications using ontologies, the benefits of 

using a knowledge representation system in a form of an ontology are reusability, 

interoperability, reliability, maintenance, and knowledge acquisition.  Although the 

method of making this communication differs with applications, an ontology allows both 

humans and machines to have a method of communicating a domain knowledge in a 

consistent manner.   
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 According to Jasper et al., there are four broad categories of ontology 

applications, namely neutral authoring, ontology as specification, common access to 

information, and ontology-based search.  (Jasper et al., 1999, 6) 

In “neutral authoring”, information is documented in a single language, which is 

then converted into different forms for reuse in various target systems.  The main 

motivations for using this type of ontologies are the cost benefits of reuse and the 

portability of knowledge across multiple applications.  In order to support neutral 

authoring, supporting technologies such as a unidirectional ontology translator is 

required.   

“Ontology as specification” applications use a single ontology of a particular 

domain as the knowledge specification basis for developing a particular type of software.  

Since the software relies on the ontology to provide specific information of a domain, the 

ontology requires rich semantics with as little ambiguity as possible.  Unlike the neutral 

authoring approach, this application does not translate the ontology so much as it guides 

the target software development.  Benefits of such systems include documentation, 

maintenance, and reliability of the domain knowledge.   

Ontologies used as “common access to information” translate information into 

multiple formats.  Using a mapping technique, the ontology renders sharing information 

between different platforms intelligible by using a shared understanding set of terms.  

The ontology provides a way of interoperability and knowledge reuse of disparate 

systems.  Supporting technologies include translators and parser generators.   

Finally, “ontology-based search” applications are used to search information 

repositories for relevant resources.  The motivation of using an ontology to assist the 

search is to retrieve a more precise result.  These applications require technologies such 

as ontology browsers, search engine and inferencing tool.  

 The OAKDA falls into the last category of ontology application.  The goal of this 

application is to assist users in obtaining better search results by exploring the knowledge 

contained in ontologies.  Rather than relying on brute Web search engines approaches, 

using OAKDA to “explore” a relevant domain and all the related concepts, relationships 

and properties of a search term would lead to a more effective list of results.  Since the 
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tool has the capability to traverse the pertinent ontology that relate to the user’s area of 

interest and graphically view all the relevant concepts and their relationships, it allows 

the user to explore and better understand the domain of interest.  This is a different 

method of retrieving and discovering information than a simple brute Web search. 

 

C. KNOWLEDGE DISCOVERY USING ONTOLOGIES 
It is best to illustrate the benefits of using ontologies to discover knowledge by 

using OAKDA with a number of example ontologies.  The examples presented in the 

following three sections show how mining ontologies assist in domain knowledge 

discovery and the search for the right resources on the Web in the domains of wine, 

cartoon and geography. 

1. The Wine Domain 
Since the proliferation of the web pages on any topic imaginable, when someone 

wants to find information on a given subject the internet is now the first place to search.  

Whether it is for a profession, academic or personal purpose, the phrase “Google it” has 

become the ubiquitous solution.  However, depending on the topic, “Googling” can 

actually provide more questions than answers.  For example, if a user wants to search the 

Web on the topic of wine, there is no limit to the kind and number of resources produced 

by brute force search engines like Yahoo! and Google.  For instance, a search of the word 

“Bordeaux” in Google results in 16.4 million hits, including sites for tourism to the 

Bordeaux region, the Université Bordeaux, as well as Web sites selling Bordeaux wine, 

as shown in Figure 65.   
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Figure 65. Google Search Results 

 

These resources, while numerous, are not useful to someone with limited 

knowledge about wines in general and Bordeaux wines in particular.  In fact, the 

information overload may creates more problems than solutions.  When a user is 

unfamiliar with the search term, he or she greatly benefits from understanding the domain 

knowledge of the concept of interest.  In other words, the user should learn the context in 

which the search term or topic belongs.  

One way of gathering information is to read a book in that subject or even peruse 

through all the various Web sites that the search term retrieves.  The first method may be 

the most effective way of obtaining thorough knowledge on a topic, especially if the 

subject involves complex ideas or relationships.  The second method of perusing all the 

various Web sites may be helpful and by process of elimination one can deduce the 

appropriate context of their search.  However, without prior knowledge of the domain 

context, blind search can lead to misinformation.  In both cases, the knowledge discovery 

can be time consuming.  The third method is the use of an ontology.  In this case, wine 

domain would be graphically represented in terms of classes, instances, and property 

relationships. 
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Although humans are trained to glean information primarily from text, graphical 

representation can aid understanding.  By representing ontology graphically, individuals 

may be able to “learn” certain important facts about a knowledge domain more efficiently 

than reading text off of a page.   

In the case of the user searching on the topic Bordeaux, the user should first learn 

that it is a type of wine that is a special variety due to the location of its origin.  This 

information is available if the user has a method of navigating a wine ontology to find 

how Bordeaux wine relates to other types of wine and what characteristics of Bordeaux 

distinguishes it from different wines, as well as other relevant concepts and relationships 

of the wine domain.   

There are various methods to “read” or mine an ontology.  It can be displayed in 

the OWL syntax or other ontology languages.  Otherwise, for easier visualization, 

ontologies can be viewed using an editor such as Protégé.  Figure 66 shows the Bordeaux 

as a class in the wine ontology in the Protégé ontology editor.   

 
Figure 66. Protégé View of the Wine OWL Ontology 

 

Using Protégé, the user is able to view all the classes, properties and individuals 

of the ontology.  The asserted ontology, shown in the leftmost window of Figure 66, is 
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classified using the classifier RacerPro to produce the inferred ontology in the second 

window.  Based on the asserted description, the inferred ontology shows that the 

Bordeaux has two major subclasses, namely Red Bordeaux and White Bordeaux.  Within 

these two classes of Bordeaux wine, there are other subclasses, each distinguished by 

their unique characteristics, such as region and type of grape used, while inheriting all the 

traits of the parent classes, Red Bordeaux or White Bordeaux. 

Protégé, like other ontology editors, makes it easy to read and navigate an 

ontology.   However, in order to mine an ontology using an editor, the user must know 

exactly what ontology he or she needs as well as have access to them to load into the 

application.  If users have no knowledge about their domains of interest, it is unlikely that 

they will have access to the appropriate ontologies.  For those users, Protégé is not useful 

as an ontology-based search application.  Protégé is an application more appropriate for 

ontologies developers rather than the users.  

The OAKDA proposes to fill the gap between available ontologies representing 

various domain knowledge and the resources on the Web.  It is an application that allows 

users to search its database of ontologies for their search term of interest and find the 

appropriate ontology that fits the appropriate domain.  When users specify a search term 

of interest, OAKDA allows them choose from various ontologies and navigate along the 

most relevant ontology tree to discover related concepts and relationships that were 

previously unknown to them.  Using the example above, one can search the OAKDA 

database of ontologies for the term “Bordeaux” as shown in Figure 67. 
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Figure 67. OAKDA Search Screen 

 

Once the search term is submitted and OAKDA finds a match in the database, it returns a 

list of hits, as in Figure 68. 

 
Figure 68. List of Knowledge Base Search Results 

 

As Figure 68 shows, all the related terms are extracted from the wine OWL 

ontology.  The “SCORE” of the search results is the ranking of match “closeness” and the 

“TYPE” refers to the element’s OWL ontology object types, such as class, property or 

individual.  Once the user reviews the results, he/she may begin to have a better idea 

about what additional information is relevant to their original search.  In this case, the 
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user may be interested in learning more about Red Bordeaux.  If the user clicks on that 

term, OAKDA generates a graphical representation of the Red Bordeaux class and all the 

objects related to this main concept of interest.  Figure 69 shows the Red Bordeaux object 

as the middle node and all the related objects, in this case super and sub classes of Red 

Bordeaux Class.  The direction of arrows from the Bordeaux class as well as the color of 

the node identifies the type of class. 

 
Figure 69. OAKDA View of Red Bordeaux Class 

 

From Figure 69, the user discovers that Medoc is a subclass of Red Bordeaux for 

which the user would like to obtain additional information.  The user can reorient the 

graph, using the "Orient about Node" command, which will show the Medoc class as the 

new central object of the graph.  Figure 70 shows the result of the new orientation.  Using 

this tool, one can easily navigate along the tree of the ontology hierarchy and view the 

classes, properties and individuals related to the search term of interest.   
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Figure 70. OAKDA View of Medoc Class 

After the graph is reoriented around the Medoc class, the user finds that there are 

two types of Medoc Red Bordeaux wines, known as Margaux and Pauillac, which are 

subclasses of the Medoc class.  It also shows that the Medoc class inherits its properties 

from three parent-classes, Dry Red Wine, Red Table Wine and Red Bordeaux.  That is, 

Medoc is a type of Red Bordeaux as well as a red table wine and a red dry wine.  Hence, 

the user acquires knowledge about the domain he or she is interested in by traversing the 

ontology that graphically displays all the immediately related concepts and relationships 

of the search term.   

Furthermore, the OAKDA application automatically inferences any ontology 

loaded into the system, hiding the detail between asserted and inferred relationships 

between classes, as displayed in the Protégé ontology editor in Figure 66.  It is the 

inferred ontology, classified through RacerPro that identified all the multiple inheritances 

of the Medoc class.  When the user searches the ontologies using OAKDA, the 

inferencing automatically occurs behind the scene and the user is able to view a valid and 

accurately classified ontology. 

In this simple example, OAKDA shows how it can assist users to search for 

additional information around the initial search term without the user having an accurate 

understanding of the domain or context of the term.  All the concepts in this example 
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were in the class level of the ontology.  However, users may also use OAKDA to find 

instances and attributes of the search term.  Examples of discovering these concepts and 

relationships in OAKDA are explained in next two sections. 

2. The Cartoon Domain 
When applicable, OAKDA also displays individuals and properties, along with 

class concepts.  For example, suppose a user is interested in finding resources on the 

search term "Millicent."  This concept does not provide enough information to retrieve 

meaningful search results without additional context.  To add context, also suppose that 

the user knew that Millicent is a cartoon character.  However, even with this additional 

contextual information, performing a brute search on the terms "Millicent and Cartoon" 

lists results that does not provide user with a consistent set of contextual or domain 

knowledge.  Instead, it would be helpful if the user can navigate the cartoon ontology to 

understanding exactly where Millicent fits in the world of cartoon characters.   

Once the user searches the term in OAKDA, it will list all the relevant ontologies 

that have Millicent as a match.  When the search returns the results of the match, 

Millicent is found as an individual in the cartoon ontology.  Figure 71 shows Millicent, as 

the center node and highlighted in yellow, as an instance of the Mickey Mouse class.  It 

also shows that it has property relationships with other individuals.  For instance, 

Millicent has an “is niece of” relationship with Minnie, which in turn has an inverse 

property, “has niece” relationship, with Millicent.  As mentioned in the previous two 

chapters, class properties denote relationships between individuals.  Therefore, properties 

are not visible to the users unless there are instantiated individuals in the ontology. 
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Figure 71. OAKDA View of Millicent Individual 

 

Similar to the wine ontology example above, the best way to navigate an ontology 

or explore the domain using the OAKA application is to reorient the graph around 

different objects of the ontology graph.  After understanding all the relationships around 

Millicent, the user may want to discover more information about Mickey.  This 

completely reorients the ontology graph with the new object, Mickey, as the center of the 

graph, as shown in Figure 72. 
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Figure 72. OAKDA View of Mickey Individual 

 

In Figure 72, the Mickey individual is now the central point of the graph and all 

the immediate concepts and relationships are depicted around the new object.  The new 

graph now shows a different section of the ontology revealing other concepts that were 

not included as part of the Millicent graph.  When the OAKDA graph is centered on an 

individual, as in Millicent or Mickey, the user sees all the different relationships that the 

key concept has with other objects or values.  Again, the user not only discovers 

information about the original search term, the user also gains knowledge on the 

tangential concepts of the domain.   

Once the user obtains sufficient knowledge about the domain and the relevant 

contextual terms, he or she will have a better understanding of the types of information or 

resources to search for on the Web.  OAKDA makes it easy for the user to design a list of 

search terms based on the graphical ontology representation.  When the user finds a term 

that belongs as part of the search string, he or she can simply uses a right-click drop-

down menu of the mouse to add it to a list.  Figure 73 shows how a user adds the name of 

an object to the search list, using the "Add as Search Term" command. 
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Figure 73. Adding Terms to the Search List 

 

The user may add as many terms as desired; however, just as having too few 

selections can lead to an overload of Web page “hits,” too many search terms may 

eliminate many relevant resources.  It is recommended that the user choose different 

combinations of relevant terms to compare the results of the matched resources.   

Once all the search terms are added to the OAKDA list, the user can manually 

edit them as appropriate.  In the case of Millicent, the user has learned by using OAKDA 

that it is an instance of Mickey Mouse cartoon character.  Therefore, the list of search 

terms include “Millicent” and “Mickey Mouse.”  In Figure 74, the user can combine 

these two terms using different logical operators to perform the Web search.  These 

operators have the same restrictions and conditions as those available in most search 

engines.  The default, likewise, is the “AND” operator as is in other search tools.   
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Figure 74. OAKDA Web Search Parameter List 

 

Although the list in Figure 74 is relatively simple, it adds a context to the term 

Millicent that the user did not know before using OAKDA.  Rather than just searching on 

“Millicent” or “Millicent and cartoon,” the above list of terms provides the relevant 

context to the user’s Web search.  Once the list of search terms in complete, the user 

submits the query to OAKDA.  Figure 75 shows the results of this query. 

 
Figure 75. Web Search Results 
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The list of results shown in Figure 75 is derived using the same brute force search 

algorithm used by most search engines such as Google and Yahoo!  However, by 

tailoring the list of search terms after discovering relevant domain or contextual 

knowledge of the user’s initial query, the Web search matches will be significantly 

different from the original set.  The contribution that OAKDA makes is not to change the 

way Web searches are performed, but to assist users to get the most appropriate 

information by providing a method of obtain additional knoweldge about their term of 

interest. 

3. The Geography Domain 
Even in a domain that a user may be familiar with, it is possible to discover new 

relationships by mining the domain ontology.  If an ontology is developed as a domain 

knowledge representation (KR) for general application purposes, it can be used as a 

reference to easily learn new information.  The geography domain falls under this 

category.  As detailed in Chapter 3, this ontology was developed for the purpose of 

demonstrating the ontology development methodology, and also to be used as one of the 

ontologies in the OAKDA knowledge base.  In this section, an example of how to use the 

geography ontology for knowledge discovery will be shown using OAKDA. 

Suppose a user is deciding to go on vacation and want to find a place that meets a 

certain set of criteria, such as physical geography features and proximity to other 

locations.  Of course, he or she can go to travel Web resources to discover different 

destination options.  However, obtaining a better understanding of the world geography 

domain can help narrow down the traveler’s options.  For instance, a particular traveler is 

a nature-lover who is interested in finding a location that is near a lake, river, and 

mountain, and possibly all this one a small island.  This traveler is also interested in 

seeing different types of physical geography in a relatively small area or a place where he 

can walk through a rainforest as well as a desert.  In order to discover such a location, the 

traveler needs to find information on the different geographies of potential destinations. 

Using the OAKDA application, the user decides to search on the term "island 

country" as a start.  A list of ontology matches is presented and the user selects the most 

relevant concept from the geography ontology, having the highest score ranking.  
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OAKDA graphs the Island Country class, as a center node, and its related concepts as 

shown in Figure 76.   

 
Figure 76. Island Country from the Geography Ontology 

 

The graph shows that there are several individuals, shown as oval nodes with the 

arrow point towards the center, of the Island Country class.  This implies that these are 

real-world instantiations of the island country class, and shown in the results the user 

confirms that these individuals are island countries.  The user can learn more about any 

one of these individuals by reorienting the graph around that node.  In this case, the 

traveler wants to find more information on Madagascar and reorients the graph around 

that individual node.  Figure 77 shows the resulting graph.  In general, an ontology's 

richness is represented at the instantiation level.  While the ontology graph at the class 

level merely shows the taxonomy of classes and their instances, orienting the graph 

around an individual node provides information on its class as well as all the property 

relationships it has with other individuals.  In other words, the information presented at 

this level displays all the semantic relationships the individuals have with others in the 

domain.  Reorienting the ontology graph around Madagascar individual, the user now can 

see all of its relationship to its class as well as the types of relationships or links, shown 
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as a circle node between two individuals, it has with all the other individuals in the 

ontology. 

 

 
Figure 77. Madagascar Individual Centered View 

 

According to the geography ontology, shown in Figure 77, Madagascar is an 

island country located in the continent of Africa and is surrounded by the Indian Ocean.  

It has a Tropical Humid climate and it contains such geographical features as 

Maromokofro Mountains, Anjafy Plateau, Mahajamba River and Lake Alaotra.  

Madagascar also has a rainforest, named Masoala.  All this information can be gleaned 

from the OAKDA graph representation of the Madagascar individual.  Furthermore, the 

traveler also finds out information he was not specifically searching for but may find 

interesting or useful, such as the languages spoken in Madagascar includes French, and 

that it is governed by a republic government.  In this example, the user finds a match to 

his search for an ideal location for a vacation by mining the geography ontology, and can 

narrow his Web search for a travel agency or resource accordingly. 
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In this example, the user was not necessarily looking for an appropriate context or 

domain of a search term, rather the user used the application to find a match to a set of 

criteria.  That is, starting from a high level concept, island country, OAKDA helped the 

user drill down the ontology to the representation of real-world entities, individuals, 

where the user can learn all the attributes or properties they have with other entities.  For 

instance, by mining the individuals of the island class, the traveler narrows down his 

options to those that meet his criteria.  Of course, the user could have begun his search 

with a different term, such as rainforest or tropical humid climate and come to the same 

results.  No matter which node of the ontology the search or mining starts, OAKDA 

allows the users to traverse up and down the tree to find the related information.  

However, it is only at the lowest level of detail, or instantiation of classes, that one is able 

to see the rich semantic relationships of individuals and where find detailed and complex 

knowledge about the concept of interest and the domain overall.   

Using OAKDA, users can focus on a narrow area of interest from relatively a 

large domain, such as a geography domain.  Rather than search through volumes of 

mostly irrelevant web pages to find the right combination of information, one can quickly 

get to the necessary information in one site by searching for the right node and then 

mining its related concepts.  In this example, the user understands the basic relationship 

of the geography concepts, but needed to know the specific instances that had the right 

combination of search criteria.  OAKDA provided the traveler with the appropriate 

geography domain content information that allowed him to discover new knowledge that 

is of interest to him. 

In the three examples of using OAKDA to assist in Web searches suggest there 

may be utility in using ontology to discover knowledge of value to users.  It can be as 

simple as navigating the class hierarchy of a domain, such as the wine example or as 

complex as learning all the minute relationships of the individuals.  The goal of the 

OAKDA application is to assist its users to easily discover knowledge or information that 

is difficult with a Web search engine alone.   Furthermore, by representing the ontology 

graphically and reorienting around different nodes, it is easier to grasp the high and low 

level details than an OWL document or even an ontology editor tool like Protégé.  
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D. OTHER ONTOLOGY SEARCH APPLICATIONS 
Using ontologies in a search capability is not unique to OAKDA.  Ontology's 

semantic richness represented in languages that are XML based, such as RDF, 

OIL+DAML, or OWL, makes it a powerful tool.  Specifically there are two application 

of interest, namely OntoSearch (http://www.ontosearch.org/) and OntoXpl, that are 

relevant to OAKDA. 

OntoSearch is an application that searches for ontologies via the Web.  The goal 

of this application is to encourage reuse of knowledge bases represented in ontologies 

and provide a mechanism for searching for existing ontologies on the Web.  The user 

inputs the search word or words and the application finds the matching ontologies 

available on the Internet.  The user also selects the "type" of ontology needed, namely 

RDF, RDFS, DAML, or OWL.  Similar to OAKDA, OntoSearch also allows graphing 

capabilities of ontologies.  OntoSearch is an important application that complements 

OAKDA.  The success of the OAKDA depends on the availability of ontologies that 

covers all the various domains of the real world.  It needs to build a library of ontologies 

as its database and the OntoSearch application is a useful tool to find those that are 

available on the Web.   

The OntoXpl, Ontology Explorer Tool, is an application developed at the 

Concordia University (Canada) that assists in the exploration of ontologies using Racer as 

an inferencing engine of OWL DL.   This application is to complement ontology editors 

and visualizations tools such as Protégé, with the emphasis on exploring different levels 

of an ontology.  The user choose an ontology and the application models it into eight 

browsing categories, namely "file selector, "natural language" description, structural 

information, exploration of concept/property axioms, inspection of concept and role 

hierarchies, view of statistical information, inspection of A-box graph structure, and the 

interactive use of RACER's query language, nRQL." (Haarslev et al, 2004, 3). 

Although these other ontology-based applications exist, OAKDA is unique in 

storing a database of ontologies and matching the user search term to the appropriate 

ontology.  This aids the users to find relevant domain content and design Web searches 
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that will result in the most useful list of resources.  Unlike OntoSearch and OntoXpl, 

users need not know anything about ontologies to use the application.  OAKDA is an 

end-users' tool rather than a developer’s one.   

 

E. CONCLUSION 
 There may be great value in representing knowledge in a format that can be 

processed by machines, as well as humans.  By leveraging the available semantics of 

RDF and OWL, ontologies can model the concepts and relationships of a real world 

domain that systems can "read" and inference based on the rules of logic.  Since valid 

ontologies are often difficult to build, there must be incentives for the domain experts to 

construct them.  Ontologies can become more powerful as more applications are 

developed to take advantage of their structured knowledge representation.  

OAKDA is an application that uses a library of ontologies to look for the user 

search terms.  It hides the details of the OWL constructs and presents the users with an 

interactive graph that helps them discover information that they did not previously know 

but might be useful for them.  Its purpose is to add relevant context to user Web searches 

to assist in retrieving the most relevant Web page when using brute force search engines 

such as Yahoo! and Google. 
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V. ARCHITECTURE OF ONTOLOGY AIDED KNOWLEDGE 
DISCOVERY ASSISTANT (OAKDA) APPLICATION 

A. INTRODUCTION 
This chapter describes in detail the software and hardware architecture of the 

Ontology Aided Knowledge Discovery Application (OAKDA) Prototype. As discussed 

in the previous chapters, the objective of OAKDA is to leverage OWL-DL ontologies to 

help end users to improve upon the formulation of their web search query by providing a 

framework and environment to discover terminology that makes their web searches more 

relevant and precise. 

OAKDA enables the user to augment an initial set of search content with data 

derived from ontology files in one or more domains of interest.  With additional search 

terms and better understanding of the domain of interest, users can create queries that are 

both focused and relevant.  Results are delivered back to the users through a web search 

portal. 

The application facilitates the above scenario by providing a framework to: 

1. Pre-search a database of ontology files with the user’s initial set of search 
terms to help the user locate the ontologies that are relevant. 

2. Perform Description Logics (DL) inferencing to represent the selected 
ontology in its fullest meaning.  

3. Provide a means to for the user to explore a relevant ontology by 
implementing a graphical interface that makes navigation between linked 
ontology elements easy and intuitive. 

4. Assist the user in formatting the gathered search content into a web search 
query. 

One way OAKDA can be used to explore an ontology is to move up and down the 

taxonomy of its classes.  Alternatively, the application can traverse an ontology through 

relationships between the instantiations of different classes.  Asserted content in 

ontologies are connected by links between instantiated classes known as “Individuals”.  

Individuals in an ontology are related through individual/property relationships.  Class 

definitions contain members called properties that serve to describe relationships to other 

individuals or concrete data types.  For example, the class Human may have a property 

called hasChild.  The hasChild property specifies that it will be “filled” by a class called 
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Human.  Suppose we instantiate two individuals from the Human class and call them 

Bill and Mary.  If Mary is Bill’s daughter, then we can relate these two individuals 

together through the hasChild property relationship where Bill.hasChild  Mary.  

The following is a typical use case for OAKDA: 

• The user starts with an initial search term related to the domain of interest.  
The user is assumed to have little acquaintance of the knowledge domain. 

• The user searches all stored OWL-DL data for string matches. 
• The user navigates a chosen OWL-DL ontology to extract related information 

to expand the initial search term. 
• The user searches the web with the new terms discovered from the OWL-DL 

ontology. 

Because the content of an ontology is connected in meaningful ways, the end user 

may discover information that they otherwise might not be aware of if they have a means 

to traverse terminological (class) and asserted (individual, property) relationships.   

An end user may also be able to uncover knowledge domains that contain their 

initial search term but are not contextually correct.  Knowing about these knowledge 

domains may also useful for web search because the information can be used to signal the 

search engine to avoid retrieving pages that contain terminology from a domain that is 

not relevant.  

The following sections describe in detail the system elements of OAKDA.  

Section B describes in generic terms, the software architecture framework that OAKDA 

development was based upon.  Section C provides a description of each component, its 

attributes and roles in the application.  Section D shows in detail how these components 

interact with each other.  The conclusion provides some thoughts and lessons learned 

during the process of developing the prototype. 

 

B. MULTI-TIER APPLICATION VS. SINGLE TIER ARCHITECTURES 
A multi-tier software architecture is a type of client/server architecture whereby 

the logical components of the application are segregated by function into a composition 

of layers, known as “tiers”, that divide up the components of the system. 
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Layers of multi-tier applications are defined by groupings of program 

functionality similar to encapsulation in Object Oriented Programming.  Each layer 

represents a grouping of logic that possesses a small number of interfaces that can be 

used to send messages.  This arrangement creates interconnections with a small number 

of interfaces between the tiers.  Because only a few interfaces need to be broken to isolate 

the tiers, they are considered “loosely coupled”.  The goal of having loosely coupled 

architectures is to limit the effect that programming changes in one tier will have on other 

tiers.  The segregation of logic promotes reuse of components and reduces development 

and maintenance costs to design by limiting the scope and complexity of each tier. 

The multi-tier architecture contrasts sharply with the type of architecture used for 

mainframe computing, now known as single-tier architectures.  These software 

applications consisted of a monolithic cluster of code where all function points were in 

scope from any part of the program, i.e. the designers were not constrained from having 

presentation logic make direct calls into the data retrieval logic, etc.  The effect of this 

approach was a design where all parts of the program were “tightly coupled” and changes 

to one part of the program would have cascading effects throughout the code.  The 

Single-Tier design increases the level of difficulty for software maintainability and ability 

to change to meet new or evolving requirements. 

1. Presentation GUI Tier   
This tier is composed of the software installed on the client side computer that 

displays a graphical user interface (GUI) for the application.  The interface could be a 

general purpose program such as a web browser or a specialized program specially built 

to interact with a server. 

2. Presentation Logic Tier 
The presentation logic tier is responsible for provisioning the interface 

information to the client side and performing the steps to assemble the content which 

users will view and possibly interact with.  There are three distinct types of presentation 

logic sub-tiers: 

1. Web Tier: The web tier is descriptive of systems using HTTP for messaging 
between the client and server.  The content on this tier consists of HTML, 
XML, CSS, and/or JavaScript that is rendered by the client web browser.  
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Programs on this tier are responsible for assembling content and getting the 
data from the business and data access tiers.  The Web Tier also consists of 
the Web Server and Application Servers responsible to listen for HTTP 
request messages from multiple clients and for providing a dispatching 
interface to the programs that assemble HTTP responses.  All data processing 
for this tier occurs on the server side. 

2. Proxy Tier: Programs involving the “proxy” tier support a distributed 
computing architecture.  This tier’s functionality is most often provided by a 
third party’s Web Services, described in more detail below. 

3. Client Interface: Unlike the Web and Proxy tier, this component will execute 
on the client side of the system but its business rules are downloaded from the 
server.  It is responsible for rendering custom displays for the end user. 

 
3. Business Logic Tier 
This tier contains the “business rules” used to perform calculations or transform 

and manipulate data. 

4. Data Access Tier  
This tier includes any components that are used to interact with or access 

information on the Data Tier.  Examples of these components are operating system API’s 

used to store data on host file systems or DBMS (Database Management System) access 

API’s such as ODBC (Open Database Connectivity) and JDBC (Java™ Database 

Connectivity). 

5. Data Tier: 
Data that needs to be “remembered” by the application or is used as a driver for 

future processing is stored on this Tier.  It is the layer that stores all the application data 

and is an essential part of any Multi-tier application.  The data usually resides in a 

database or file system accessible by the server. 

As indicated in the previous section, the intention behind structuring software in 

Multi-Tier Architectures is to enhance the ability of the system to adapt to change or at 

least allow large sections of a project to be reused in new applications.  This approach 

was chosen for the OAKDA prototype in order to make it more adaptable to changes 

during its development and lifecycle. 
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C.  OAKDA PROTOTYPE MULIT-TIER ARCHITECURE 
Table 7 below shows an overview of the OAKDA components and their 

associated tiers.  Additional detail describing each OAKDA tier component is provided in 

the section below.   

 

TIER OAKDA  COMPONENTS 

Presentation GUI Web Browser (Microsoft Internet Explorer, Mozilla Firefox, 
etc ) 

Web 

Apache Web server 
Tomcat Application server 
Java Servlets 
HTML 
CSS 
JavaScript 

Proxy Google SOAP Web Services 

Presentation 
Logic 

Client 
Interface 

Java TouchGraph Applet 
Java Http API 

Business Tier 
Java (match algorithm, data transformations, graph data 
construction) 
Racer 

Data Access Tier 
JRacer 
Racer 
JDBC 

Data Tier MySql Database 
OWL-DL Ontology Files 

Table 7. OAKDA Multi-Tier Component Matrix 
 

1. Presentation Tier 
The Presentation Tier code runs on a Web browser.  The Web browser is not 

actually developed as part of the application; rather it is an off-the-shelf client software 

that is required to interface with HTTP messages that OAKDA receives and produces.  

Web browsers render Web-based document content into an interactive graphical user 

interface.  The OAKDA application assumes that a Web browser such as Internet 

Explorer or Mozilla FireFox is available to the end user and that it is configured to 

process CSS, JavaScript, and Sun Java™ Applets. 
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2. Presentation Logic Tier 
The Presentation Logic Tier provides the information that provisions the user 

interface on the client side.  The OAKDA application uses the following languages and 

components to render a GUI presentation for the end user. 

a. Presentation Logic: Web Tier 
The Web Tier consists of those Presentation Logic components that use 

Internet based languages, technologies and methodologies. 

(1) HTML (Hypertext Markup Language) is a non-proprietary 

subset of the SGML markup language.  HTML is treated as a specification by Web 

Browsers for rendering viewable document content and Web forms.  The bulk of 

OAKDA screens are rendered in HTML 

 (2) CSS (Cascading Style Sheets) is a mechanism for adding 

style to HTML documents.  It performs a number of presentation effects, like positioning, 

which serves to augment the HTML specification.  CSS is ancillary to the maintainability 

and reusability of Web pages by separating the presentation from the content. 

(3) JavaScript is a scripting language that executes on a thread 

provided by the Web browser’s (client side) process.  Web content can be made to be 

more interactive and dynamic using JavaScript.  In OAKDA, JavaScript is used most 

often to implement the Web page navigation scheme. 

(4) Apache Web Server – A Web server is a software program 

designed to deliver data, usually in the form of HTTP messages, across a TCP/IP network 

between client and server computers.  The sequence of events for client/server 

communication over HTTP is usually as follows:  

• The client sends an HTTP request to the server.  The request 
consists of the IP address of the computer running the server, 
the IP of the computer making the request and parameters that 
may specify the type of content the client is requesting.   

• The Server responds with an HTTP response containing the 
requested content, if found. 

 
The Apache Web Server, obtained from the Apache Software 

Foundation, was the Web Server of choice for the OAKDA project.  It is open source and 
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freely available software.  The Apache Software Foundation is an organization founded 

to facilitate the development of several software projects.  Since 1999, the Apache Web 

Server has been the most visible and popular HTTP server in use on the Internet. 

 (5) Apache Tomcat Application Server – A Web server’s main 

function is serving HTML documents to a requesting client.  However, when the content 

of those documents is dynamic, some kind of data processing must be accomplished to 

perform calculations or retrieve data necessary to construct the content on the fly.  

Application servers are the components that facilitate the interface between a HTTP 

message handled by the Web server and the invocation of a specific program to perform 

data processing.  An application server can be thought of as a type of middleware that 

handles messaging between the Web server and the various back-end applications, such 

as databases or programs that implement business logic in a data processing environment. 

Jakarta, a sub-project of the Apache project, facilitates Java™ 

based open-source projects.  The Tomcat application server is one the Apache Jakarta 

projects utilized by OAKDA.  Its distinguishing feature is that it enables a special type of 

Java™ class called a Servlet to perform HTTP messaging toward the Web server and it is 

the program entry point for the invocation of Java™ methods utilizing the server side 

components. 

 (6) Java Servlets – A servlet is a Java™ class that is built to 

interface with HTTP on an application server.  It reads HTTP parameters, manages HTTP 

sessions, and handles other services such as Web site authentication.  Output data is sent 

using built-in servlet methods that create the HTTP response messages to be transmitted 

to the client via the Web server.  

b. Presentation Logic: Proxy Tier 
The Proxy Tier is the sub-category of the Presentation Logic that deals 

with the use of third party components in the architecture. 

(1) Google Web Search Service – Web Services are application 

level services which enable inter-process communications between computers across 

Internet or intranet network boundaries.  When processes communicate, they require the 

ability to transmit data arguments to “call” a far process and transmit “return” messages 

to a calling program.  Web Services provide a framework for transmission of calls and 
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“return” data via XML formatted request (call) and response (return) documents.  The 

XML requests and responses are received and dispatched by Web servers, usually over 

HTTP.  XML and Web Services act as a middleware that eliminates the need for data 

processing systems to interoperate directly with each other.  Since the remote procedure 

calls are performed in a way that is platform non-specific, the programs executing the 

business rules do not need to be compliant with each other's software or hardware 

platforms.  In this way, Web services solve compatibility and interoperability problems 

common in other types of network based inter-process communication. 

There are three key components to Web services.   

• Simple Object Access Protocol (SOAP) defines the XML 
grammar for Web services requests and responses.  A 
SOAP envelope is the name of the XML document that is 
transmitted as request or response.  Inside the envelope for 
a request are the function call names, the parameter list and 
all other information needed for the peer system to make a 
service invocation.  SOAP response envelopes are similar 
to requests in that they are a formatted XML documents, 
but they contain the “return” data of the request or fault 
messages if the request could not be processed. 

• The WSDL (Web Service Description Language) 
component serves to describe the specifications for the 
SOAP request and response document formats. 
Analogously, when calling a method of a linked program, 
the programmer needs to know the method name, the 
parameter list, the data types of each parameter and the 
return value.  A program that does not properly reference a 
method specification will usually not compile.  In the case 
of Web services, the components that interact are separate 
entities with no “awareness” of each other.  The WSDL is a 
way for the Web services host to advertise the correct 
specification that should be used to construct SOAP syntax 
for successful interoperability. 

• UDDI (Universal Discovery Description Integration) is an 
internet or intranet facing directory that serves to advertise 
Web service capabilities available for use.  The UDDI can 
provide the basic information needed to make contact with 
a Web service host including the download of a specific 
Web service’s WSDL. 
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(2) Google Web Search API – Google offers free Web services 

client software for personal, non-commercial use.  After registering for the service, the 

Web services client is able to send a SOAP message containing a Web search query to 

Google’s Web services host.  The host dispatches the query to Google’s internal 

mechanisms for searching its database of indexed Web content and returns a SOAP 

response to client.  The response contains the Web page hits generated by the submitted 

query.   

The OAKDA application uses a Web services interface to perform 

Google Web searches.  The response SOAP message is parsed and formatted into the 

HTML pages of the OAKDA application.  In this way the user gets an end-to-end 

capability when using the application.  They would otherwise have to transfer to a Web 

search portal when they want to perform their Web searches. 

c. Presentation Logic: Client Interface 
The Client Interface is the sub-category of the Presentation Logic Tier that 

provisions a user interface which executes on the client but whose business logic is 

downloaded from the server. 

 (1) Applets are programs written in the Java™ programming 

language that can be embedded in an HTML page, in the same way that image files can 

be included.  Java™ applets are executed in the client Web browsers Java™ Runtime 

Environment (JRE) and are subject to restrictive policies, for security reasons, that 

prevent the running program from accessing the local machine's file system or from 

making network connection to any computer other than the program's originating host.  

The policy is meant to prevent malicious programmers from harming the client side 

computer. 

The OAKDA application creates a client request to download an 

applet from the OAKDA Web server.  The applet has add-ins that allow it to 

communicate with the Web server and maintain HTTP sessions. 

 (2) TouchGraph12, created by Alexander Shapiro in 2001, is an 

open-source user interface software used for information visualization and data modeling.  

                                                 
12 http://www.TouchGraph.com 
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TouchGraph is commonly used for visualization of data points that can be represented in 

directed graph format.  TouchGraph was extensively modified for use with the OAKDA 

application because it did not have a native interface for input of the data representing the 

directed graph. 

The modifications enabled the software to accept the information 

regarding nodes and the connections between them.  The software renders the 

information in a two-dimensional display interface and simulates “virtual physics” called 

“Spring-Layout” which serves to spread the data evenly on the presentation screen area.  

Nodes connected by edges will attract each other while all other nodes repel one another.  

At short distances, the repulsion “force” of the nodes is stronger than the attraction force 

of nodes connected by the edges.  The result of this is to cause all nodes to self-organize 

in a way where they will not be concealed by other nodes.  Also, nodes that are part of a 

strongly connected section of the graph will tend to cluster together while weakly 

connected parts separate. 

The software also provides functionality to manipulate the graph 

data on the screen.  The nodes can be repositioned by using “drag and drop” mouse 

commands, and can be rotated in the viewable area.  The interface also has slider controls 

that change the intensity of the node repulsion force that is compressing or elongating the 

edge lengths in the graph.  This is useful when the graph is crowded by a large amount of 

nodes because the expansion will increase the readability, but at the expense of the 

number of nodes that can fit in the viewable field.  The software also has the capability to 

hide whole sections of the graph so it can be scaled down to a manageable size.  To 

restore the hidden nodes, the user clicks on an indicator icon that re-expands the graph. 

In the OAKDA application, TouchGraph executes on a client-side 

applet.  It is used to render only a portion of the user selected ontology.  The nodes are 

represented by the ontology names for class, property, and individual data.  TouchGraph 

directional edges connect the nodal information to show the inheritance relationships and 

differences in color gradation further underscore direction of inheritance between classes.  

All classes are depicted as blue boxes while a darker shade of blue is meant to indicate 

that the class is a parent of the lighter shaded class node.  
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(3) BOT Java™ Package – The BOT Package is client-side 

software used for HTTP communication.  The package contains programs that have the 

capability to manage session and authentication between Web client and server.  Jeff 

Heaton, who created software robots called “bots” able to automatically traverse linked 

Web sites and perform data processing on their content, authored the package.  The 

“bots” require the ability to manage session and authentication to successfully access 

Web site information. 

The HTTP Java™ class contained in the BOT package performs 

some of the same functions as a Web browser such as Microsoft’s Internet Explorer or 

the Mozilla Firefox.  The important contribution of the BOT package to OAKDA is the 

management of HTTP session information. A session is the sum of all HTTP 

communications between a client and the Web server.  The HTTP protocol on its own 

only manages communications where each request and response pair is independent from 

the all others.  Hence, HTTP is considered to be a “stateless” protocol.  It is important for 

the Web application to be able to associate the series of request/response pairs in order to 

correctly differentiate between the requests and responses of multiple sessions.  Without 

this ability, a response could get associated to the wrong client, and misdirect the end 

user to an incorrect Web page. 

Heaton’s HTTP Java™ class has methods to support cookies, 

which are messages sent from the Web server and stored on the client’s host machine.  

During subsequent communications, the identifier information in the cookie is sent back 

from the client to enable the Web server to track a particular session and the events that 

the session registered.  Heaton’s HTTP software is also used by OAKDA to enable HTTP 

sessions between the TouchGraph applet and the Web server.   

3. Business Tier 

The Business Tier in a Multi-Tier Architecture contains the component programs 

that perform calculations or data transformations. 

 

 

 



 

 122

a. Racer Server 
Racer is a data processing server for knowledge representation systems 

and description logics.  Racer was developed by Ralf Möller13, Volker Haarslev14, and 

Michael Wessel15.  Knowledge representation, a field of Artificial Intelligence, focuses 

on the design of formalisms that are both epistemologically and computationally 

adequate for expressing knowledge about a particular domain. (Baader et al., 2003, xiii)  

Description logics is a framework for representing knowledge in a form of individuals, 

classes of individuals and property relationships that describe them. 

Racer acts upon terminological and asserted aspects of ontology data.  In 

OAKDA, it is architecturally situated as a middleware between ontology markup files, 

such as OWL-DL, and the programs that need to access or modify them.  Racer provides 

reasoning or inferencing as a central service.  The algorithms underpinning Racer’s 

reasoning engine guarantee "correctness", "completeness" and "decidability."  

Correctness means that no false conclusions are drawn.  Completeness implies that all 

correct conclusions are present and decidability means that there exists a terminating 

program that can complete reasoning.  Reasoning allows one to implicitly infer 

represented knowledge from the explicit knowledge contained in the knowledge base. 

(Baader et al., 2003, 43)  As an example, suppose it is explicitly stated that X is to the left 

of Y and that Z is to the left of X.  A reasoning engine infers that Z is also to the left of Y 

by the rule of the transitive property, “to the left of”.  Racer also provides services to 

either publish to or subscribe (query) from an existing knowledge base.   

Racer divides ontology content in terms of A-Box and T-Box reasoning 

where the A-Box is the set of asserted relationships between individuals and classes or 

between individuals and other individuals.  The T-Box is the set of classes and properties 

of classes arranged in a hierarchical inheritance relationship that describe the schema of 

the domain. The classes contain properties that further define them.  The “A” in A-box 

                                                 
13 University of Hamburg, Germany 
14 Concordia University, Montréal Canada 
15 University of Hamburg, Germany 
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refers to "asserted" content, while the “T” in T-box refers to "terminology" and the 

relationships within the T-Box which resemble a schema. 

The following is a list of services that Racer has available to the end user. 

For T-Boxes, Racer can answer the following queries: 

1. Class consistency with regard to a T-Box: Is the set of objects 
described by a Class empty? 

2. Class subsumption with regard to a T-Box: Is there a subset 
relationship between the set of objects described by two classes? 

3. Find all inconsistent classes mentioned in a T-Box. Inconsistent 
classes might be the result of modeling errors. 

4. Determine the parents and children of a class with regard to a T-Box: 
The parents of a class are the most specific class names mentioned in a 
T-Box which subsumes the class. The children of a class are the most 
general class names mentioned in a T-Box that the class subsumes.  

 
For A-Boxes, Racer can answer the following queries: 

1. Check the consistency of an A-Box with regard to a T-Box: Are the 
restrictions given in an A-Box with regard to a T-Box too strong, i.e., 
do they contradict each other? Other queries are only possible with 
regard to consistent A-Boxes. 

2. Instance testing with regard to an A-Box and a T-Box: Is the object for 
which an individual stands a member of the set of objects described by 
a certain query class? The individual is then called an instance of the 
query class. 

3. Instance retrieval with regard to an A-Box and a T-Box: Find all 
individuals from an A-Box such that the objects they stand for can be 
proven to be a member of a set of objects described by a certain query 
class. 

4. Computation of the direct types of an individual with regard to an A-
Box and a T-Box: Find the most specific class names from a T-Box of 
which a given individual is an instance. 

5. Computation of the fillers of a property with reference to an 
individual.  Check if certain concrete domains constraints are entailed 
by an A-Box and a T-Box use. 

In the context of the OAKDA application, Racer’s primary functions are 

for query and inferencing of the OWL-DL data.  Racer is instructed to upload the set of 

OWL-DL relations into its memory and deduce any extra information present through its 

inference functions.  Once the ontology is present in Racer’s memory, OAKDA initiates 

queries that deliver the nodal relationships portrayed in the graphical user interface.  An 

example of a query is “retrieve all direct subclasses of Class “X”.  A formatted query in 
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Racer’s syntax is sent to the server, where processing takes place and the answer is 

delivered back to the source address of the requester. 

Racer’s implementation language is COMMONLISP.  Racer 

communicates via the command line or with a TCP/IP network interface.  It listens for 

TCP/IP requests messages and issues responses containing the requested information 

over the same channel.  It can be configured to handle multiple simultaneous users.  

Since no “publish” methods are used in the OAKDA system, there is no need for Racer to 

maintain session state for each user.  Racer is accessed by OAKDA programs through the 

user of the Java™ JRacer API, which abstracts Racer function calls into a format callable 

by Java™ programs. 

b. Ontology Search matching algorithm 
In the OAKDA application, the end user searches a database table 

containing the indexed content for all OWL-DL files loaded in the system.  The indexed 

ontology data are accessible through JDBC calls to MySql database that stores the 

information.  Substring matches are pulled from the database using the SQL “LIKE” 

command.  A substring match occurs when one string partially or fully matches another 

string.  "Regular Expressions" are used in later processing to formulate a match closeness 

score.   A Regular Expression is a pattern of characters that describes a set of strings.  

OAKDA uses a regular expression construct provisioned by the Java™ “String” class.   

When a substring is found, a score is computed that rates the "match 

closeness" (MC).  This works as follows: the Query String (QS) is matched against the 

Indexed Ontology Element (IOE) string.  The string Length Difference (LD) between QS 

string length and IOE string length is computed.  If QS matches with IOE, the MC score 

is calculated as follows: 

MC := 1 - ( LD ÷ IOE string length ); 

For example, suppose QS and IOE are given as SENT and PRESENTER.  Since SENT is 

a substring of PRESENTER, the match score will be computed as: 

LD :=  5 = 9 – 4 
IOE string length := 9 
MC := 0.44 = 1 – ( 5 ÷ 9 ) 
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If QS and IOE are given as PRESENT and PRESENTER the score will be 0.77, which is 

correctly ranked higher than the previous query.  Each indexed node is given a score 

between 0 and 1 to rank its relevance to the match. 

Users performing a search are not limited to a single search term.  Since 

the indexed ontology element often is a phrase, more than one term can apply when 

searching the database.  OAKDA’s programs will parse an element named 

TropicalHumidClimate as TROPICAL HUMID CLIMATE.  A ranking algorithm 

was designed to handle cases where the closeness of match across a phrase needed to be 

computed. 

Consider an example where the user query string is TROPIC HUMID and 

the indexed ontology element is TROPICAL HUMID CLIMATE.  The overall match 

ranking will be calculated in the following way and as shown in Table 8. 
 IOE 

QS TROPICAL HUMID CLIMATE 

TROPIC 0.75 0.0 0.0 

HUMID 0.0 1.0 0.0 

Table 8. Preliminary String Match Matrix 
 

1. The best match will be computed for each word.  The score 
computation matrix for individual string matches is shown in Table 2. 

2. The highest scores (in bold) will be used in the overall computation. 
3. Any IOE term that did not have a positive score will be assigned the 

average score for the all terms.   
 Average= 0.58 = (0.75 + 1.0 + 0.0 ) ÷ 3 
4. The total score is the product of all scores:   
 Score = 0.44 = 0.75 * 1.0 * 0.58 

The intention behind ranking the match similar to the ranking of page hits 

in a Web search.  The ontology content with the highest score will have the closest match 

to the given search terms.  The closer the score is to one, the higher ranking in the 

displayed list.  This algorithm is crude but fairly effective.  Future enhancements would 

include methods similar to those used by Web search portals.  
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c. Ontology Batch Loader 
Since users benefit when there is an ontology in OAKDA’s repository that 

contains the knowledge domain of their interest, the application contains functionality 

that enables end users to make contributions to the database.  OAKDA enables users to 

submit ontology data for other users.  OAKDA provides a webpage that allows end users 

to input the URL of an OWL-DL ontology that is hosted on the Web.  When the URL is 

provided and the end user clicks the submit button, the OWL-DL downloads to 

OAKDA’s host server.  Batch loader programs call Racer functions that read and parse 

the class, individual and property nodes contained in the ontology and load them into 

OAKDA’s internal database. 

4. Data Access Tier 
The Data Access Tier comprises programs in the systems that are used to 

interface with the Data Tier. 

a. RICE JRacer API 
The JRacer API is a package of Java™ classes with capability to format 

and invoke, via TCP/IP sockets, request messages formatted as COMMONLISP Racer 

Server commands.  The API also can listen for Racer’s TCP/IP response and bind the 

response to Java™ objects.  The methods of the API mirror those of the Racer server 

except that JRacer invocations can be defined in terms of Java™ syntax and use Java™ 

typed objects.   

JRacer was developed as a part of an ontology visualization project called 

RICE16 (Racer Interactive Client Environment), built by Ronald Cornet of the University 

of Amsterdam.  In creating the JRacer interface, Cornet provides an easy to use, reusable 

and documented interface between Racer and Java™ programs. 

b. JDBC 
Java Database Connectivity (JDBC) is a Java API built into DBMS 

systems which allows Java programs to run SQL statements.17  In OAKDA, Java 

                                                 
16 http://www.b1g-systems.com/ronald/rice/ 
17 ODBC is another well known API and is parallel to JDBC, but it is language-independent.   
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programs use JDBC to execute the SQL that queries and updates data stored in its MySql 

Database RDBMS.   

5. Data Tier 
The Data Tier is the layer of a Multi-Tier Architecture that stores the application data. 

a. MySql Database 
MySql18 is a free19 multi-user database server.  It is ideal to use a database 

server in a Web-based project because several end users may use the site simultaneously.  

MySql supports the SQL query language used to query and update data stored in 

relational tables.  MySql also supports TCP/IP connectivity.  Unlike some other popular 

database servers, MySql does not support transactional processing or referential integrity 

in its tables.  The section below describes two of OAKDA’s key database tables, 

outlining their structure and functionality. 

(1) Indexed OWL-DL Content Table - This table contains an 

indexed version of OWL-DL ontology documents loaded into the OAKDA system.  The 

information contained in the OWL-DL flat file are read, parsed, vetted and processed by 

the Racer server and loaded into the MySql index table by Java programs using JDBC 

and SQL Data Manipulation Language (DML) statements.  Table loading occurs when 

the system administrator or an end user of the site wishes to add OWL-DL content to the 

OAKDA data store.  

Each term contained in the ontology is referenced in a MySql 

database table that has the following columns: NODE_TEXT, NODE_TYPE, 

NAMESPACE and OWL_FILE.  The matrix shown in Table 9 describes the Ontology 

Index Table. 

 
 
 
 
 
 
 
 

                                                 
18 http://www.mysql.com/ 
19 General Public License (GNU) 
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Field Name Data Type Description 

NODE_TEXT String The name of the OWL-DL term 

NODE_TYPE String Describes the OWL-DL type of the named term 

(Class, Property, Individual, Role, etc) 

NAMESPACE String The URI of the OWL-DL schema 

OWL_FILE String The name of the OWL-DL flat file 

DATE_INDEXED Date The date on which the file was loaded into OAKDA 

Table 9. Metadata Descriptions for Indexed OWL-DL Content Table 
 

Table 10 shows an example data that would be stored in the 

“Indexed OWL-DL Content Table.” 

 
NODE_TEXT NODE_TYPE NAMESPACE OWL_FILE DATE_INDEXED 
Person class http://www.owl-ontologies.com/generations.owl generations.owl 20051112 
GrandMother class http://www.owl-ontologies.com/generations.owl generations.owl 20051112 
GrandParent class http://www.owl-ontologies.com/generations.owl generations.owl 20051112 
MaleSex class http://www.owl-ontologies.com/generations.owl generations.owl 20051112 
GrandFather class http://www.owl-ontologies.com/generations.owl generations.owl 20051112 
Parent class http://www.owl-ontologies.com/generations.owl generations.owl 20051112 
Gemma individual http://www.owl-ontologies.com/generations.owl generations.owl 20051112 
Peter individual http://www.owl-ontologies.com/generations.owl generations.owl 20051112 
Matt individual http://www.owl-ontologies.com/generations.owl generations.owl 20051112 

Table 10. Example data for Indexed OWL-DL Content Table  
 

The data in Table 10 is a transformation of the OWL-DL content.  

The reason this is done in advance is to enable quick lookups during the term searching 

portion of the program.  This can be done by Racer but it would be prohibitively slow and 

resource intensive if Racer was used to read and perform reasoning of all OWL-DL file 

content each time search is requested.  It is far less memory and CPU intensive to search 

an indexed list since no reasoning is necessary for term search. 

(2) Selected Search Term Table – This table stores the items 

selected by the end user during terminology discovery which is later applied to the Web 

search.  Since the applet is running in a separate HTTP session, the user selections and 

HTTP session ID must be stored for later retrieval by the application.  The following 

matrix, in Table 11, shows the description of the Selected Search Term table. 
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Field Name Data Type Description 
SESSION_ID String The name of the HTTP session that launched the 

TouchGraph applet. 
SELECTED_NODE String The text of the OWL element node 
DATE_SELECTED Date The date/time when the item was saved in the table 

Table 11. Metadata Descriptions for Selected Search Term Table 
 

b. OWL-DL Ontology File 
Web Ontology Files contain the representational data used by OAKDA to 

find connected terminology information.  In OAKDA, only OWL-DL files are processed 

by the RACER engine.   

6. OAKDA Client and Server Components 
Table 12 delineates, from a physical standpoint, where each component in 

OAKDA’s Architecture resides.  This is intended to provide a quick summary of the 

physical location of each component of the system.  The “System Component” column of 

the table lists each part of the OAKDA system.  The “Client” column is the computer 

used by the end user of OAKDA to access the system.  The "OAKDA Host” column is 

the computer that is the server for the system.  The “3rd Party Server” column contains 

those computer resources that are leveraged by OAKDA via the Web. 

  OAKDA Components 
System Component Client OAKDA 

Host 
3rd Party 
Server 

Apache Tomcat App Server  √  
Apache Web Server  √  
Google    √ 
Google Web Services  √ √ 
HTML / CSS / JavaScript √   
Java™ Objects √ √  
Java™ Applet √   
Java™ Servlet  √  
OWL-DL Ontology File  √  
Racer Server  √  
TouchGraph √   
Web Browser √   
MySql Database  √  

Table 12. OAKDA Component Physical Location Matrix 
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D. OAKDA PROTOTYPE PROCESS FLOW 
In the previous section, the components of OAKDA were introduced individually.  

This section explains how OAKDA components interact and details the sequence of the 

interaction.  The diagram in Figure 78 provides a synopsis of all the communication 

pathways of OAKDA.  The diagram is divided into three sections to indicate network 

boundaries: the Server Side, where the OAKDA system is hosted, the Client Side, where 

the client computer and the end user of OAKDA reside, and the Internet, where Google™ 

web services are located.  All interactions traversing these boundaries are TCP/IP based 

network messages.  There are three different modes of communication between the 

software and hardware system components: TCP/IP, direct program calls between Java™ 

programs, and System I/O20 and disk I/O21.  

 

  
Figure 78. OAKDA Component Messaging Pathways 

 
                                                 

20 These are standard input and output from the client computer, such as video, mouse clicks and 
keystrokes. 

21 For Racer's read of the OWL-DL files. 
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1. Anatomy of an OAKDA Search 
In order to illustrate the complete workings of OAKDA, shown in Figure 1, this 

section describes a typical OAKDA usage scenario.  This description touches upon all the 

components shown in Figure 78 and provides an overview of all interactions and 

processes underlying the system.   

Firstly, it is assumed OAKDA will be used to refine Web search or to discover 

knowledge about a domain.  We will suppose a user exists who has a search topic of 

interest in cartoons and an initial search term: "Jerry."  The user launches the OAKDA 

home page to begin the process.  Figure 79 shows that this HTTP requests/response 

communications is initiated with the Apache Tomcat Web server.  The home page is 

composed of static HTML content.  Figure 80 shows the OAKDA home page. 

 
Figure 79. OAKDA Client / Web Server Interaction 
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Figure 80. OAKDA Home Page 

 

Next, the user enters the search term, “Jerry”, into the client side HTML form and 

presses the submit button.  This action generates a HTTP request containing the search 

term as an argument to the Web server which is then dispatched to the Tomcat 

application server.  Tomcat instantiates a program event that is handled by a specific Java 

servlet.  The event invokes a Java program to create a SQL string, with search term 

“Jerry” incorporated, to query the MySql Database.  Messages between Java and MySql 

are accomplished via the JDBC API.  The database table queried contains records of 

indexed ontology content.  The query returns the list of ontologies where the search term 

is found.  The query results are passed back to the Java servlets where they are ranked by 

match closeness, incorporated into a HTML document and sent to the client via HTTP by 

the Web server.  In this case, the term “Jerry” was found in the OAKDA database in an 

ontology called “Cartoon Star”.  This interaction is depicted below in Figure 81. 
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Figure 81. Client interaction with OAKDA Database 

 

At this point the client presentation is showing a ranked list of found ontology 

content and a links to the source OWL-DL files where each match was found.  The user 

selects the “Cartoon Star” ontology by pressing a button next to each result row.  This 

action sends HTTP messages to Tomcat which are dispatched to Java servlets that create 

an HTML document to be sent as a response back to the client browser.  HTML 

<APPLET> tags in the response direct the browser to download and instantiate a Java 

applet running on the browser’s Java Virtual Machine22 (JVM).  The Applet is used to 

render OWL-DL data in the form of a directed graph for the user interface using 

TouchGraph software.  The first action the applet does is to send an HTTP request 

message to the Web server which in turn accesses Racer via the JRacer middleware.  

Racer is instructed to read the “cartoon_star.owl” file and query it for all nodes directly 

associated to “Jerry.”  Description logics based reasoning executes as the ontology is 
                                                 

22 A component of the Java platform which executes Java Bytecode. 
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instantiated in Racer’s memory.  [See appendices 1, 2 for sample code]  A list describing 

all ontology information connected to “Jerry” is passed back to the Java Servlet which 

instantiates a Java bean object to be used as a container for this information.  The Java 

bean is serialized23 and sent, via the Web server, back to the client applet as HTTP data.  

The Applet then un-serializes the data back into a Java bean object.  This object is passed 

to the TouchGraph program and used to render the nodes and edges of the directed graph 

depicting the OWL-DL ontology on the end user’s client presentation.   This chain of 

communications is shown in Figure 82.  

 
Figure 82. Client Applet Interaction with Racer Server 

                                                 
23 Serialization is the process of saving an object onto a storage medium in order to later be able to re-

create an object that is identical in its internal state to the original. 
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Figure 83. Graphical Visualization of the Cartoon Star Ontology 

 

The client interface is now displaying a directed graph showing all the ontology 

nodes connected to “Jerry” in the Cartoon Star ontology (Figure 83).  Some of the data in 

the display shows that “Jerry” is an Individual node instantiated from the 

“Disney_Mouse” class and that it is related to another individual named “Tom” through 

the “In_Same_Cartoon_Series” property.  The user initiates an event to re-orient the 

graph around another node.  By right clicking the individual, “Tom”, and selecting the 

“orient about node” option, the applet sends an HTTP message to the Web server that in 

turn dispatches an event to a Java servlet which, via JRacer middleware, queries Racer 

for all the OWL-DL data directly related to the “Tom” node.  The data is incorporated 

into a Java bean, serialized and sent back to the client applet.  The applet then re-displays 

a new directed graph centered on the individual, “Tom.”  Some of the changes to the 

screen now show that “Tom” was instantiated from the “Disney_Cat” class, but the 

“Jerry” node is still present since it is related to “Tom” by the 
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“In_Same_Cartoon_Series” property.  The components used for this event sequence are 

represented in Figure 83. 

When the end user discovers the terms needed for the Web search in the displayed 

graph, the term is selected by right clicking on the node and choosing the “add as search 

term” option on the “Tom”, “Jerry” and “Disney_Cat” nodes.  This event causes the 

applet to send an HTTP message to the Web server dispatching a Java servlet to create a 

SQL “insert” statement containing the selected ontology values along with the session ID 

of the current HTTP session.  The session ID is later used to retrieve the entire set of user 

selected search terms that are stored during that session.  The servlet executes the SQL 

statement using JDBC API in the MySql database.  The end result is a record added to a 

database table used to store user selected search terms.  These component interactions are 

shown in Figure 84. 

 
Figure 84. Interaction between Client Applet and Database 



 

 137

When the user has chosen search terms and pressed the button labeled “Search the 

Web” on the applet presentation view, an HTTP request is sent to the Web server which 

dispatches a servlet to create a SQL statement that accesses all the stored search terms 

chosen during the current Web server session.  The servlet executes the query, retrieving 

“Tom”, “Jerry” and “Disney Mouse” from the database.  This data is incorporated into an 

HTML document that is sent back to the client browser for display.  The applet running 

in the browser’s JVM is terminated.  The presentation now consists of the list of selected 

search terms in an HTML form designed to allow the end user to edit or modify the 

content.  This action uses OAKDA components shown in Figure 81. 

The user is now ready to initiate the Web search.  By pressing the “Submit 

Query” button on the client presentation, HTTP messages are sent to the Web server 

which dispatches a Java servlet to incorporate the message data into a SOAP envelope 

destined for Google’s Web Services portal.  The Web server routes the SOAP message 

request and receives Google’s SOAP HTTP response.  Contained in the response is the 

listing of Web search hits that Google found in its database.  This information is 

integrated into an HTML document and sent back to the client browser by HTTP.  This 

interaction is shown in Figure 85 below.  The OAKDA screen shot of the web links 

retrieved by Google Web services is depicted in Figure 86. 
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Figure 85. Client Interaction with Google Web Services 

 

 
Figure 86. OAKDA Web Search Results 
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E. OAKDA PROTOTYPE EVENT SEQUENCE AND PROCESS FLOW 
This section elaborates on the previous section and provides Sequence diagrams 

of the interactions of OAKDA processes when initiated by client generated events.  A 

sequence diagram is a UML graphical construct used to show the sequence of 

interactions between object instances in a software based system.  A sequence diagram is 

specific, referencing the method name of the function called in the interaction.  The 

specific type of sequence diagram is a useful tool for a programmer for implementing a 

UML specification.  For the purposes of this thesis, a more general type of sequence 

diagram will be used, called a Service Level Sequence diagram, which shows logic in 

detail but does not reference specific program function points.  Following the diagrams 

and other depictions show a clear picture of the operation of the system. 

1. OAKDA UML Sequences  

a. Home Page 
This section describes the events and programs that launch OAKDA’s 

Home Page, the first step taken by the end user of the system.  Figure 87 shows the 

associated sequence diagram. 

 
Figure 87. Home Page Sequence Diagram 
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In the starting state for this sequence, the client has not yet invoked 

OAKDA.  The necessary preconditions are the end user has an Internet connection and 

Web browser.  The sequence initiates when the end user launches a Web browser and 

enters the Web address for OAKDA.  The browser sends a HTTP request to the OAKDA 

Web server.  The Web server deciphers the request and sends the contents of the 

Index.html document back to the client as an HTTP response.  The browser receives the 

response and renders the HTML to show the OAKDA home page on the client Web 

browser. 

b. Ontology Search 
This section describes the system events and programs that are activated 

when the end user initiates a search of the indexed OWL-DL content stored in the 

OAKDA database.  The end result of the action yields a display of the search results in a 

ranked list.  Figure 88 below shows the associated sequence diagram. 

 

 
Figure 88. Ontology Search Sequence Diagram 

 

In the starting state, the OAKDA home page is displayed.  The home page 

consists of a form used to search the indexed OWL-DL content.  There are no other 
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necessary preconditions.  The process initiates when the end user enters search terms into 

the form and clicks the submit button. 

Next, Tomcat Server receives a HTTP request and dispatches a call to a 

Java Program to compile and execute a SQL query against the data in the 

OWL_NODE_INDEX table in the MySql database.  The query looks for partial or full 

string matches.  For each record in the result set of the query, a score is computed that is 

later used to rank the closeness of the match with other rows.  The data from the search is 

sorted by rank and formatted into the HTML content on the Search Results Page 

displayed on the client browser. 

c. Ontology Search Results Page 
This section describes the events and programs that construct the applet 

interface used for ontology navigation and terminology discovery when an OWL-DL file 

is selected.  Figure 89 shows the associated sequence diagram. 

 

 
Figure 89. Ontology Search Results Page Sequence Diagram 
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In the starting state for this sequence, the Ontology Search Results Page is 

displayed.  The page shows a sorted list of ontology nodes resulting from the Ontology 

Search Page.  The list of the matched content from the search is ranked by the closeness 

of the match.  The columns in the table are:  

a. Score – A real number between 0 and 1 that describes the closeness of the 
match.  This list is sorted in ascending order. 

b. Element Name – The OWL-DL element name of the node in OWL-DL 
content. 

c. Type – The element’s OWL-DL type can consist of a CLASS, 
PROPERTY or INDIVIDUAL. 

d. File – The name of the OWL-DL file where the element name was found. 
 

The sequence starts when the user selects one of the buttons adjacent to a 

list item.  At the end of the sequence the user is presented with graphical rendering of the 

ontology data in the form of a directed graph showing all nodes closely linked to the 

selected search term. 

First, the element name, OWL-DL type, and OWL-DL file are passed as 

HTTP arguments to the Tomcat application server.  Tomcat calls a servlet that builds an 

HTML response containing a <APPLET> tag reference to a Java™ program with the 

HTTP session ID and the OWL-DL arguments embedded in the page.  The HTTP 

response is sent back to the client side browser.  In rendering the HTML, the client 

browser is instructed to download the Java™ applet code from the Web server. The 

applet establishes a second HTTP session, sending the OWL-DL arguments to the 

application server.   

Tomcat receives this message and responds by invoking a Java program 

that uses the JRacer API to communicate with the Racer server.  The OWL-DL element 

names are used as arguments in the invocation.  The first action performed is to check if 

the referenced OWL-DL file has already been loaded in the Racer server’s memory.  If it 

is not, a call is made requesting Racer to read the OWL-DL file.  Racer’s internal 

programs cause it to load, parse and execute description reasoning algorithms. 

After the program returns a message that the Racer has successfully 

loaded the OWL-DL markup file, the servlet program performs a series of calls designed 
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to query Racer for elements directly related to the OWL-DL element name in the query 

statement.  There are three types of queries that can be made.  These are differentiated by 

their element type which can be one of the following: CLASS, PROPERTY, or 

INDIVIDUAL.  This is shown in Figure 90, 91 and 92, respectively. 

 
Figure 90. OWL Elements Directly Related to CLASS Type 

 

When the OWL-DL argument of the query is a CLASS type, as in Figure 

90, the servlet will query Racer for parent classes, sibling classes, child classes and direct 

instances.  The query element “Class” is the central element of the graph.  Arrows 

showing the inheritance relationship by their direction, link related elements.  These 

queries only vary by the OWL-DL “type” of the argument.   

 
Figure 91. OWL Elements Directly Related to INDIVIDUAL Type 



 

 144

 
Figure 92. OWL Elements Directly Related to PROPERTY Type 

 

Figure 91 and 92 depict the elements directly related to queries on the 

OWL-DL INDIVIDUAL and PROPERTY type, respectively.  The query output is 

arranged into list that captures the pair wise relations of the element names.  This list is 

contained in a Java™ bean24 object and serialized25 to “freeze” the object in its current 

state. 

Tomcat routs the serialized output back to the client applet via HTTP.  The 

client applet reconstitutes the data into a Java™ bean with the same state it had on the 

server side.  The bean is passed as an argument into TouchGraph program methods that 

render a graphical representation of the relation pairs in the user interface.  The element 

names become the labeled nodes in the two-dimensional graph and the inheritance 

relationship of the related nodes determines the arrow direction of the edge that connects 

them.  The user interface displayed at this point is used for ontology exploration and 

selection of node names for a later Web search. 

d. Ontology Exploration Applet GUI 

This section describes the events and programs that enable the end user to 

traverse an ontology displayed by the TouchGraph Applet.  When the user selects a new 

node as the focal point of the ontology, the graph reorients about that node.  Figure 93 

shows the associated sequence diagram. 

                                                 
24 A Java Bean is simple Java Class that has “set” and “get” methods for each of its properties. 
25 “Flattening” a Java object into a persistent format such as a file or stream object. 
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Figure 93. Ontology Exploration Function Sequence Diagram 

 

The starting state is for the applet to display a portion of the ontology in 

the TouchGraph applet interface.  When the user double-clicks on a given node, or right-

clicks on a node and selects “orient about node”, the applet will redisplay with the 

selected node as the focal point of the graph. 

When the listener in the TouchGraph applet detects the mouse event, it 

responds by sending a HTTP message to Apache/Tomcat server.  The message has HTTP 

parameters which specify the element name selected, the element type, and the OWL-DL 

file to which it belongs.  Tomcat detects the messages and invokes Java™ programs 

using the JRacer API to communicate with the Racer server.  The program creates 

TCP/IP calls to query the Racer server for all OWL-DL elements related to the new node.  

Just like in the section above, the information is passed down to the client applet and 

redisplayed on the user interface. 

e. Ontology Node Selection 
This section describes the events and programs that enable the end user to 

select a term from the displayed ontology to be used for Internet search.  Figure 94 shows 

the associated sequence diagram. 
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Figure 94. Ontology Node Selection for Search Sequence Diagram 

 

In the starting state, the TouchGraph applet is displaying on the client 

GUI.  There are no other preconditions for this sequence.  The initiating action starts 

when a user right-clicks on a node and selects “add as search term.” At the ending state, 

the selected term is stored in the OAKDA database with a reference to the HTTP session 

ID of the HTTP session that launched the applet and the TouchGraph applet displays the 

terms in a list box. 

When a listener on the client side applet detects the mouse event, HTTP 

messages are sent to the Tomcat server.  Tomcat then dispatches Java™ programs which 

invoke a SQL INSERT statement via JDBC to the MySql database server.  The SQL 

statement directs the database to store the selected term and its HTTP session ID to the 

SELECTED_SEARCH_TERM database table.   

f. Search Pre-Processing Page 
This section describes the events and programs that construct the Web 

page which enables the end user to “fine tune” the Internet search query.  Figure 95 

shows the associated sequence diagram. 
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Figure 95. Web Search Pre-Processing Page Sequence Diagram 

 

In the starting state, the OAKDA screen shows the Ontology Exploration 

GUI.  There is a necessary precondition that search terms related to the current HTTP 

session are stored in the MySql database.  The initiating action for this sequence occurs 

when the end user clicks on the “Search the Web” button on the Ontology Exploration 

page.  The ending state shows the user a Web page displaying the search terms in editable 

text boxes with radio button options by each term that enable the user to further configure 

the syntax of the Internet search. 

After the “Search the Web Button” is pressed, an HTTP request is sent to 

the Tomcat server which invokes a Java™ program to fetch records stored in the database 

SELECTED_SEARCH_TERMS table.  The SQL statement uses the HTTP session ID as 

the key to find the records connected to the session of current OAKDA user.  Some post 

processing takes place to reformat the list of terms for the Web search.  Since the terms 

are often concatenated together either with ‘_’ characters or by upper/lower case 

transition, programs are invoked to parse the strings from their OWL-DL format into 

their component words and convert them to upper case text.  The namespace information 
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on each OWL-DL element is discarded.  Table 13 lists examples of typical 

transformations. 

Typical OWL-DL format  Web Search Format 
|http://abc.org/owl#Animated_cartoon|  ANIMATED CARTOON 
|http://xyz.net/owl#HooverVacuumCleaner|  HOOVER VACUUM CLEANER 

Table 13. OWL Element Transformations 
 

This list of search terms is incorporated into the HTML page and sent back to the Tomcat 

server to be returned to the client browser as an HTTP response. 

The displayed page is used to further configure the search terms for the 

Internet query.  The form has button controls used for configuring the search with syntax 

used for the Google™ Web portal.  The HTML form for this page has editable text 

boxes, radio buttons, and a submit button.  The text box contains the search terms 

selected by the user during ontology exploration.  These terms may be edited by the user 

to change the word or correct their spelling.  The radio buttons are used to control the 

way the terms are used in the Web search.  They enable the user to choose one and only 

one of several options.  The “AND” radio button choice is the default selection and 

represents a Boolean “AND” for the search.  The “OR” radio button implies that the 

search will apply logically “OR” the term with any other term that has the “OR” option 

selected.  The “NOT” selection formats the Web search query to find Web pages that do 

not contain the term.  The “REMOVE” option ignores the search term so that it will not 

be incorporated into Web search at all.   
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This search will look for pages that have the string apple in the content 
but not COMPUTER 
SEARCH TERM AND OR NOT REMOVE 
APPLE     
COMPUTER     

Figure 96. Example Logical “AND” Search Syntax 
 
This Search will look for pages that have either APPLE or ORANGE but 
do not contain COMPUTER 
SEARCH TERM AND OR NOT REMOVE 
APPLE     
ORANGE     
COMPUTER     

Figure 97. Example Logical “OR” Search Syntax 
 
This search will look for pages that contain APPLE or PEAR.  The term: 
ARTILERY is ignored and is not present in the Web search 
SEARCH TERM AND OR NOT REMOVE 
APPLE     
PEAR     
ARTILERY     

Figure 98. Example of Logical “OR” and REMOVE Search Syntax 
 

Figures 96, 97 and 98 above show examples to of how the search 

configuration form assists the end user to configure discovered content into a Web search 

query.  Figure 96 shows an example using a logical AND & NOT to retrieve web pages 

that contain “apple” but not “computer.”  Figure 97 is similar to 96, except the documents 

retrieved should have either “orange” or “apple” found in the content but not “computer.”  

In Figure 98, the selection of the REMOVE option nullifies the inclusion of the content 

into the query.  This means the pages retrieved will have “apple” or “pear” in the content 

but the “artillery” string will have no bearing on the search.  The form configuration is 

used as input to be translated into search syntax used in the Google Web services 

interface.  
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g. Google Web Search Page 
This section describes the events and programs that create the Web page 

showing the Internet search links from the Google Web portal.  Figure 99 shows the 

associated sequence diagram. 

 

 
Figure 99. Google Search Page Sequence Diagram 

 

In the starting state, OAKDA’s client is displaying the Search Pre 

Processing Page.  The action that initiates the process is when the user presses the 

“Search the Web” button on the Search Pre-Processing page.  The ending state for this 

action displays an HTML page showing links to Web pages from Google™ Web 

Services that meet the criteria of the Internet search query. 

After the initiating action, the client browser sends an HTTP request 

containing the Web search query in the Web form to the Apache/Tomcat server, which 

invokes the appropriate Java™ program for the next processing step.  The program then 

constructs a Web services SOAP XML “envelope” to be sent the Google™ Web Services 

API using the HTTP protocol.  Included in the envelope call are the formatted Web 

search parameter string and a registration key required for Google™ authentication.  The 
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Web service sends back a SOAP response via HTTP that is dispatched by 

Apache/Tomcat server to programs which unwraps its contents.  The data contained in 

the response is the very similar to content displayed in a typical Google™ Web site 

search.  This data is incorporated into the HTML by the server side Java™ programs.  An 

HTTP response containing the HTML document is sent back to the client Web browser.  

The view on the client is similar to a Google search result page.  The user can access 

HTML anchors to visit the Web content found by the Google™ search. 

 

F. CONCLUSION 
The most significant aspects of the OAKDA are the Multi-Tier architecture, 

description logics reasoning services, and GUI visualization service that enables directed 

graph representation of the ontology.  The bulk of effort and research for the 

development of OAKDA was spent in these areas.  These three contributions to OAKDA 

are discussed in detail below. 

1. Multi-Tier Architecture 
The Multi-Tier architecture enabled an effective prototyping methodology to be 

employed in the development of each system component.  As new methods and 3rd party 

software were evaluated, adopted or discarded, the Multi-Tier framework kept 

dependencies from effecting adjacent components.  The architecture allowed extensive 

re-use of mature tiers through development iterations without the need for modification.  

This enabled tier integration and reintegration to be far less complicated then it could 

have been under a different architecture.  Whenever there was a failure to separate tiers 

with a loosely coupled messaging framework, a penalty was paid in code re-writes when 

changes had to be accommodated. 

The level of development effort to bring OAKDA to completion required almost 

10,000 lines of Java™ code in 50 class files.  Java™ should be mentioned as significant 

aspect of the architecture.  Java™ was the cement used to integrate OAKDA’s many 

components and was used to implement all business logic.  Java’s™ language support for 

networking (TCP/IP), useful utilities such as object serialization, and its ability to run on 

multiple platforms, enabled key design choices to succeed.  
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2 Racer 
When development of OAKDA project first stated, the Jena API was evaluated as 

a possible middleware choice for the OWL-DL processing.  The main reasons for interest 

in Jena were that the API was written in Java™ which was to be the language of choice 

for OAKDA’s other components.  After some effort to learn the API, it was found that 

Jena could parse and query OWL-DL effectively, but its reasoning services were difficult 

to discern.  Jena documentation pointed to a capability for interfacing with 3rd party 

inference tools but the mechanisms for doing this were not readily understandable.  At 

the time, Racer was being used as an add-in to the Protégé application to assist ontology 

development.  Racer provided services to assist the developer to identify conflicts within 

an ontology and was used by Protégé to rearrange taxonomy structure to a more suitable 

form.  It appeared that Racer could parse, query and reason with OWL-DL and the only 

obstacle to utilizing it in OAKDA was to find a method to incorporate it into the 

architecture.  Racer’s TCP/IP based interface allowed the software to work with any 

programming languages capable of forming and sending TCP/IP messages.  Racer’s 

native messaging framework uses a Lisp style syntax to query or publish to the Racer 

server.  Fortunately, a small Java™ based interface for Racer was already developed, 

called JRacer, which abstracted TCP/IP communications and Racer’s Lisp style syntax 

into Java function calls.  Racer is server based software, which lends itself well to the 

Web server based architecture of OAKDA, since both Racer and the Web server need to 

handle simultaneous connections.  After this discovery, Racer was selected as a 

component of the project design and the Jena API was abandoned.  The incorporation of 

Racer and JRacer greatly accelerated the development of the system.   

Racer had a certain drawbacks that may not be present with other inferencing 

middleware.  For example, Racer has no straightforward method to query the property 

restrictions in class definitions.  In OAKDA’s visualization component, it may have been 

useful to show, along with the class name, the restriction statement that defines the 

attributes an individual must possess to be a member of the class.  Instead, OAKDA only 

shows these restrictions when class instantiations, or individuals, are selected because the 

property restrictions are manifested as links between individuals.  The effect of this on 
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the OAKDA system is that any OWL KB’s without individuals do not reveal property 

restrictions and tend to appear as simple taxonomies.  This seems to be a feature of 

Racer’s description logic model.  While restrictions can be published when a class is 

defined, it is difficult to query that information from the schema representation inside 

Racer’s memory.  The asserted content represented is easier to access.  As a result, only 

in asserted content, are the class properties able to be expressed. 

3. Visualization 
It is difficult to visually decipher the patterns and meaning of large matrix of data 

without creating some type of representational image.  Graphing techniques exist to help 

comprehend the meaning in a collection of data.  OAKDA’s usefulness to the end user 

greatly depended upon providing an effective visualization framework to amplify human 

cognition and navigation support of OWL-DL data.   

OWL-DL’s topology is best described as a directed graph to represent complex 

inheritance, and property relationships between the RDF resource nodes.  In OAKDA’s 

development, approaches using HTML/CSS did not yield good results because this 

format provided no easy means to mirror the topology of the OWL-DL documents.  

TouchGraph software is designed to represent directed graphs and thus readily able to 

depict OWL-DL.  TouchGraph’s capability to self-organize to fit the available screen 

space ensured the data was distributed evenly on the viewing area and did not obscure the 

content even when it was densely populated.  TouchGraph necessitated the development 

of Applets running on the client browser which could communicate with the Web server.   

The system was lacking in organizing the inheritance relationships in a way that 

could display directional relationships between nodes in an overarching pattern.  Since 

the OWL representations of the KB contain cycles and bi-directional inheritance, the 

graph cannot be presented as a tree showing all inheritance relationships flowing from the 

top of the visualization area to the bottom.  Sometimes this results in a complex jumble 

that has no clear top or bottom organization.  However, this aspect of the visualization 

was present in most other techniques considered during the research.  This may be due to 

the difficulty of visually displaying semantically rich ontology components and their 

relationships.   
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TouchGraph has an additional software development drawback in that it offers no 

API or service for importation of data into its system.  TouchGraph’s source code needed 

to be extensively modified to enable messaging with the OAKDA server, and GUI events 

had to be developed to enable navigation between linked parts of the OWL KB.  The 

level of effort it took implement the modifications used to support OAKDA were not 

trivial. 

Overall, the vision for OAKDA as a tool for a human end user to search, process 

and navigate OWL-DL ontologies was realized.  It hoped that this application will be 

used as a tool for those interested in experimenting with the ontologies for knowledge 

discovery and Web search.  For those researching OWL-DL processing technologies, the 

OAKDA application may be a useful as a baseline example. 
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VI. OAKDA VS. GOOGLE COMPARATIVE PERFORMANCE 
STUDY 

A. INTRODUCTION 
This chapter attempts to test and answer the main thesis research question:  Can 

an ontology-based Web search application increase the effectiveness of Web search 

results over existing approaches for those searches that require a deep contextual 

knowledge of the domain of interest?  This experiment compares the effectiveness of the 

results of Web search queries formulated by study participants using the OAKDA 

application with those obtained by the same participants using the widely popular Google 

search engine.  The goal: to determine if OAKDA and the ontologies which it 

implements will have a significant positive effect on the precision and relevance of the 

web search queries generated by the participants in the experiment. 

Effectiveness will primarily be measured along three dimensions: (1) whether the 

query retrieves pages containing the pertinent answer for the questions asked, i.e. the 

precision of the results; (2) whether the page retrieved is “about” the context that relates 

back to the ontology information domain, i.e. the precision of the context; and (3) the 

participant’s own subjective rating on how well OAKDA and Google performed in 

answering the search tasks.  

 

B. EXPERIMENTAL DESIGN 
The experimental design used for the study is described in the following 

subsections, namely participants, apparatus, and data collection procedures.  

1. Participants 

The participants in this study consisted of 10 adults ranging from 25 to 70 years 

of age.  About half of the subjects are information technology workers or have some 

involvement in IT an related profession.  The rest are employed in other various fields.  

All have, to varying extents, a college education and experience in researching topics on 

the Internet. 
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2. Apparatus 
All participants in the study used Microsoft Internet Explorer and a high speed 

Internet connection.  The OAKDA application was used as the search environment for 

the test group (A full description of OAKDA and how it functions can be found in 

Chapter 6 of this thesis).  The Google Web search portal was used as the only search 

environment for the control group. 

3. Data Collection Procedures 
The data points captured from each study participant were in two main categories: 

personal data and experiment data.  The personal data included the participant’s name, 

age, and profession.  For this study, personal data was not considered in the data analysis. 

Before conducting the experiment, each subject was trained in the use of OAKDA 

with a sample search task.  The training covered OAKDA’s user interface functions as 

well as recommendations on how to construct search queries.  No training was given for 

using Google, but many of the same tips given for OAKDA were applicable for 

producing effective search results in Google.  The participants were assumed to have 

extensive experience using Google, or Web search tools like it. 

Each subject answered half of the Web query tasks using OAKDA (Test group) 

and half using Google (Control group).  This method ensured that all participants took 

part in both the control and test groups an equal number of times.  Each Web query was 

more or less equally assigned to the control and test groups26. 

For the control group, the study participants were allowed as many as three 

attempts to refine their search query.  They were permitted a maximum of 5 minutes to 

work on each question.  During this time, they were allowed to visit the retrieved web 

pages to find information that could enhance the subsequent queries.  The query term list 

from each attempt was captured as a data point.   

The test group was also allowed 5 minutes per questions but they were granted 

more time if they were experiencing technical problems or needed help with application 
                                                 

26 For the rest of the chapter, the sets of control and test data (which are different depending on the 
participant) will be referred to as control and test groups.  
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functionality.  No other type of help was given to the test subjects.  OAKDA stored all 

submitted queries in a database and only the first three queries for each participant were 

used for the study data.   

The experimental data captured for each participant were, for both control and test 

groups, the search query identifier, the number of the attempt, the Web query text, the 

participant’s overall rating of the application performance for all queries, and the 

precision scores as calculated by the experimenter.  One record was generated for every 

Web search query. Table 7.1 shows the data definitions for a recorded observation. 

 

Field Name 
Data 
Type Description 

Subject_Id Integer Unique numeric identifier for person participating 
in the study 

Group_Type String Identifies data point as being in "TEST" or 
"CONTROL" study group 

Question_Id Integer Unique numeric identifier for questions posted to 
the participant 

Attempt_# Integer Search query attempt number (1..3) 
Search_Query_String String Actual Google search term list  

Answer Score Number 

Score between (0..1) equal to the number of the 
top 10 web hits generated by the 
Search_Query_String that contained the answer 
to the search task specified by the Question_id 

Context Score Number 
Score between (0..1) equal to the number of the 
top 10 web hits generated by the 
Search_Query_String that contained the correct 
context for the search task’s domain 

Table 14. Definition of Experiment Data 
 

There were six Web search tasks in the study. The participants were instructed to 

provide the information asked for by the task in the form of a web query that retrieves 

information as relevant as possible to the task’s target answer.  The search tasks assigned 

to the participants and the associated ontologies are listed in the table 7.2 below. 
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Question 

 Id Task text Ontology File 

1 
Formulate a search query that will retrieve information about 
the geographic features of a tropical Island Nation off the coast 
of the African continent.  

Geography.OWL 

2 
Formulate a Web Search query that retrieves the name of the 
actor(s) who voiced the dog character in the cartoon “Dog 
Trouble” 

Cartoon_star.OWL 

3 
Formulate a search query which will retrieve web pages 
pertaining to at least two French artists who made both 
paintings and sculptures in the style of 19th Century Realism. 

ArtHistory.owl 

4 

Formulate a search query which will retrieve web pages 
pertaining to a computer programming language that that can 
be written in either a "Procedural" or "Object Oriented" 
programming paradigm.  This language is a derivative of the 
language used to develop the UNIX operating system. 

Programming 
Languges.OWL 

5 
Formulate a search query which will retrieve web pages 
pertaining to an electric guitar that is the signature model of a 
famous musician.  The musician’s first name begins with “L” 
and his career spans from the 1930’s to the present day. 

Guitar.OWL 

6 
Formulate a query that retrieves web pages containing the 
name of a type of golf ball commonly used ~150 years before 
the introduction of the modern golf ball and the components 
materials from which it was manufactured. 

Golf.owl 

Table 15. Participant Search Tasks 
 

After the participants finished creating Web queries for all the search tasks, they 

were asked to rate subjectively the effectiveness of both Google’s and OAKDA’s 

searches on a scale between 0 and 10.  This data was intended to represent the 

participant’s perceived measure of OAKDA’s usefulness compared to Google’s, and 

represents the “Participant Rating” score of the experiment data. 

Recall performance was not considered for the study since the data analyzed is 

“pulled” from a Web search portal, the total set of relevant data on the Web was too large 

to be efficiently measured.  The precision scores were calculated by checking the 

relevance of the top n number of retrieved Web pages from any given query.  In general, 

the precision was defined as the ratio of the number of relevant hits retrieved to the total 

number of examined hits. The statistic was expressed as a percentage.  The queries 

recorded for each participant were given a rating score in two different analysis 

categories.   
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a. The “Answer Precision” Score 
Each query result was rated between 0 and 1 (0..1) for the presence of the 

“answer(s)” to the search task in the text of the retrieved web hits.  The examination of 

the Web pages was accomplished with a Java™ program which downloaded the pages 

and used regular expression processing to find the answer text within the page content.  

The top 20 Web hits generated by each query were examined.  For each query, the 

answer precision score was determined by calculating the number of Web sites with the 

answer text divided by the total number of examined sites.  A score of .75 meant the 

answer text was present in 15 out of the top 20 Web pages retrieved by the query.   

b. The “Context Precision” Score 
Similarly, each of the top ten retrieved Web pages was examined to assess 

if they had the correct contextual background pertaining to the search task.  For example, 

if the search task pertains to the domain of golf equipment, and the retrieved web pages 

are about Gutta Percha tree agriculture, then the page was considered to be contextually 

incorrect.  The determination of whether a given page was contextually accurate was 

achieved by a visual analysis.  The context precision score was calculated as the ratio of 

the number of pages that had the correct context for the search task.   

The scores for each query formed the raw data used for the statistical 

analysis.  As stated earlier, each participant answered half (three) of the search tasks with 

Google and the other half with OAKDA.  The ten participants in the study produced a 

total of 125 Web search queries in answering six Web search tasks (each was allowed up 

to three attempts).  Therefore, each participant produced, on average, 2.08 queries out of 

a possible 3 for each test and control data set.  Only the best performing query was kept 

for each search task answered, producing 30 total observations for the test group and 30 

for the control group.  Each participant’s control and test group scores were averaged, 

leaving a total of ten observations for each experiment group, or 1 observation per 

participant.   

This data summary was performed for both the “Answer” and “Context” 

data sets, leaving three total data sets for analysis: Participant Rating score, “Answer” 
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precision score and the “Context” precision score.  The next section will describe the type 

of statistical analysis used to measure the data and the findings. 

 

C. DATA ANALYSIS PROCEDURES 
The methodology followed in the experiment yielded three data sets to be used as 

inputs for the statistical analysis.  Table 7.3 below depicts the performance scores for the 

“Participant Rating,” “Answer Precision,” and “Context Precision” data sets. 

 
  Participant Rating Answer Precision Context Precision 

Participant ID Google OAKDA Google OAKDA Google OAKDA 
1 0.6 0.7 0.417 0.850 0.600 0.900
2 0.7 0.9 0.833 0.567 0.700 0.800
3 0.7 0.75 0.650 0.900 0.667 0.567
4 0.4 0.6 0.367 0.550 0.400 0.667
5 0.6 0.9 0.583 0.817 0.733 0.733
6 0.65 0.9 0.550 0.833 0.800 0.767
7 0.4 0.8 0.400 0.867 0.633 0.600
8 0.3 0.8 0.383 0.600 0.667 0.833
9 0.7 0.7 0.500 0.833 0.633 0.533

10 0.4 0.8 0.300 0.783 0.433 0.167
Mean score 0.545 0.785 0.498 0.760 0.627 0.657 

 

Table 16. Experiment Data Results 
 

The objective for the analysis of the data sets was to see if there is a significant 

difference between score means of the test and control data sets.  The method used to test 

for significance was the t test dependant means.  The t test involves a comparison of 

means from two different groups and focuses on the differences between the scores using 

the following formula: 

1
)( 22

−
∑−∑

∑
=

n
DDn

Dt  

where, 

ΣD is the sum of all differences between groups 

ΣD is the sum of all differences squared between groups 

n is the number of pairs of observations.  
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1. t Tests for the “Participant Rating”  

This section shows the eight steps used to compute the t test statistic.  To reiterate, 

the “Participant Rating” scores consist of the participants’ rating scores of the perceived 

effectiveness of OAKDA and Google in retrieving relevant Web pages to answer the 

search tasks 

a. Statement of the Null and Research Hypothesis 
The null hypothesis states that there is no difference in the participant 

rating between effectiveness score means of Google and the OAKDA searches.  The 

research hypothesis is that the participants rate the OAKDA searches as more effective 

than Google searches.  The research hypothesis is a one-tailed, directional research 

hypothesis because it posits that the OAKDA score will be higher than the Google score. 

The null hypothesis is:  OAKDAGoogleH µµ =:0 . 

The research hypothesis is: OAKDAGoogle XXH >:1 . 

b. Set the Level of Significance or Type I Error Associated with the 
Null Hypothesis  

The risk of Type I error or level of significance is 0.05. 

c. Select the Appropriate Test Statistic  
The appropriate test statistic is a t test for dependent means, also known as 

the t test for paired samples, since we are dealing with a group of scores for the same 

participants. 

d. Compute the Obtained Value  
The obtained value for t is: 

65.4

1
)( 22

=

−
∑−∑

∑
=

n
DDn

Dt  

e. Determine the Value Needed for the Rejection of the Null 
Hypothesis  

The degrees of freedom are n –1 or 9.  Using this value and appropriate t-

value tables [Salkind, 2004, 358], the value needed for rejection of the null hypothesis at 

the 0.05 significance level is 1.833. 
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f. Compare the Obtained Value to the Critical Value  

The obtained t value is 4.65, larger than the critical value of 1.833 needed 

for rejection of the null hypothesis.   

g. Decision Time  
Since the obtained value is greater than the critical value, the null 

hypothesis is rejected.  This indicates that users rate the effectiveness of OAKDA 

searches as, indeed, higher than that of a Google search for the experiment query set. 

2. t Test for the “Answer Precision”  
This section shows the eight steps used to compute the t test statistic.  To reiterate, 

the “Answer Precision” data set consists of the precision scores of retrieved web pages, 

measured by the number of sites containing the answer text of the search task. 

a. Statement of the Null and Research Hypothesis 
The null hypothesis states that there is no difference between the answer 

precision scores of Google as compared with OAKDA.  The research hypothesis is that 

OAKDA search results contain the “answer” to the research task more frequently than 

Google searches.  The research hypothesis is a one-tailed, directional research hypothesis 

because it posits that the OAKDA precision will be higher than Google. 

The null hypothesis is: OAKDAGoogleH µµ =:0 . 

The research hypothesis is: OAKDAGoogle XXH >:1 . 

b. Set the Level of Significance or Type I Error Associated with the 
Null Hypothesis  

The risk of Type I error or level of significance is 0.05. 

c. Select the Appropriate Test Statistic  
The appropriate test statistic is a t test for dependent means, also known as 

the t test for paired samples, since we are dealing with a group of scores for the same 

participants. 

d. Compute the Obtained Value  

The obtained value for t is: 
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3.86 

1
)( 22

=

−
∑−∑

∑
=

n
DDn

Dt  

e. Determine the Value Needed for the Rejection of the Null 
Hypothesis  

The degrees of freedom are n –1 or 9.  Using this value and appropriate t-

value tables, the value needed for rejection of the null hypothesis at the 0.05 significance 

level is 1.833.  

f. Compare the Obtained Value to the Critical Value  
The obtained t-value is 3.86, larger than the critical value of 1.833 needed 

for rejection of the null hypothesis. 

g. Decision Time  
Since the obtained value is greater than the critical value, the null 

hypothesis is rejected; indicating that according to the measure of retrieved Web pages 

containing the search task answer, the precision of OAKDA is higher than Google results 

for the experiment query set. 

3. t Test for the “Context Precision”  

This section shows the eight steps used to compute the t test statistic.  To reiterate, 

the “Context Precision” data set consists of the precision scores of retrieved web pages, 

measured by sites containing the correct context of Web page content pertinent to the 

search task. 

a. Statement of the Null and Research Hypothesis 

The null hypothesis states that there is no difference between the 

“Context” precision scores derived from Google as compared with OAKDA.  The 

research hypothesis is that OAKDA search results contain the correct research task 

context more often than Google searches.  The research hypothesis is a one-tailed, 

directional research hypothesis because it posits that the OAKDA score will be higher 

than the Google score. 

The null hypothesis is: OAKDAGoogleH µµ =:0 . 

The research hypothesis is: OAKDAGoogle XXH >:1 . 
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b. Set the Level of Significance or Type I Error Associated with the 
Null Hypothesis  

The risk of Type I error or level of significance is 0.05. 

c. Select the Appropriate Test Statistic  
The appropriate test statistic is a t test for dependent means, also known as 

the t test for paired samples, since we are dealing with a group of scores for the same 

participants. 

d. Compute the Obtained Value  
The obtained value for t is: 

0.54 

1
)( 22

=

−
∑−∑

∑
=

n
DDn

Dt  

e. Determine the Value Needed for the Rejection of the Null 
Hypothesis  

The degrees of freedom are n –1 or 9.  Using this value and appropriate t-

value tables, the value needed for rejection of the null hypothesis at the 0.05 significance 

level is 1.833.  

 

f. Compare the Obtained Value to the Critical Value  
The obtained value is 0.54, smaller than the critical value of 1.833 needed 

for rejection of the null hypothesis.   

g. Decision Time  
Since the obtained value is less than the critical value, the null hypothesis 

is upheld, indicating that the effectiveness of OAKDA was not shown to be higher than 

Google results for the experiment query set. 

 

D. DISCUSSION 

The strongest performance indicator favoring OAKDA over Google was the 

participants own subjective rating.  This may be due to test group participants feeling that 

they had more confirmation of the answer’s correctness.  Since the ontologies visually 

show relationships between domain concepts, the participants got affirmation more 
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quickly compared to reading through the prose contained in Web pages and “snippets” 

retrieved by Google. 

The “Answer Precision” scores show OAKDA users performing better than those 

using Google as far as retrieving the answer text to the search question.  They do not 

however capture the confidence level of whether the user actually believed they found the 

correct answer.  Several query results with a high precision score surprisingly did not 

contain the answer text in the formulated search term list.  Rather, by using the closely 

related, but not necessarily correct, terms in the web query, the search retrieved highly 

relevant hits.  This result indicates that using the domain concepts which are closely 

related to the sought after term is a good method of formulating a Web search query.  In 

this study it was not known how many of these high performing queries were 

serendipitous. 

The “Context Precision” data shows that OAKDA did not deliver a performance 

advantage over the Google users.  This result is not surprising since the keywords in the 

text of the search tasks contained broad contextual information about the knowledge 

domain.  This was a conscious design choice to help the participants easily locate the 

appropriate ontology for the search task.  The contextual information given away in the 

search task allowed the Google group to create queries that performed as well as the 

OAKDA generated queries in terms of contextual accuracy.  

This results of the study demonstrate that an ontology assisted search application 

does indeed increase the effectiveness of the obtained results for those queries that 

require a deep domain knowledge, and provided that: (1) the search task’s domain 

correlates strongly with an existing and available ontology and (2) the information the 

researcher starts with is sufficient to retrieve the helping ontology but is insufficient to 

retrieve the sought after answer. 

In the study, every effort was made to craft search tasks that comply with the 

prerequisite conditions stated above.  First, search tasks were complex enough so as to 

not “give away” important information that would enable an easy path to the answer via a 

standard Web search.  Rather, the information contained in the search task was separated 
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by at least two degrees from the target answer.  As an example, consider the following 

query: “Find the name of the brother of Charlie Brown’s Psychoanalyst”.  Using the 

Peanuts cartoon domain, the answer, “Linus”, is two degrees away from “Charlie 

Brown”, who is the brother of Lucy, who in turn is Charlie Brown’s psychoanalyst.  This 

is an example of a query that requires somewhat deep domain knowledge.  Second, the 

test users were presumed to have an advantage as long as they managed to locate the 

ontology correctly mapped to the search task.  Having done this successfully, they only 

needed to traverse the graph nodes from a starting point in the ontology to those nodes 

pointing to the answer.  Correctly interpreting the meaning of search task and ontology 

concepts was also necessary for success. There were no instances where the test group 

had difficulty finding and selecting the appropriate ontology amongst pool of available 

OWL ontologies.  If they had not, the retrieval precision scores would have been lower 

and much more uneven among the among the control group observations. 

It is important to note, that some aspects of the study did create experimental 

noise in the data.  The knowledge domains represented in ontologies could have been 

well known to some of the participants.  The group scores might have had greater 

contrast if those participants selected had little or no knowledge in the domains selected 

for the search tasks.  Also, while every participant answered an equal number of 

questions from test and control a group, not every question was visited an equal number 

of times.  It is possible that this caused some skewing of the results.  Furthermore, 

participant performance varied based on how closely they read and understood the search 

tasks as well as their skill at using and comprehending the OAKDA user interface. 

Taken together, the significant means of the Rating scores and Answer precision 

imply that an ontology assisted search application can make a positive contribution to a 

researcher’s search effectiveness. 
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VII. SUMMARY, CONCLUSIONS AND LESSONS LEARNED 

 

A. SUMMARY 

 The stated goal of this thesis was to build an ontology-based Web application to 

assist in domain knowledge discovery and improve Web search query by narrowing the 

scope of the returned list of results.  To this end, the primary research question was, Can 

an ontology-based application be built to narrow, expand, or refine Web search terms?  

In addition, several secondary research questions follow: 

1. What is an appropriate approach for accessing and processing of contextual 
information of an OWL knowledge base? 

2. What is the most appropriate architecture for the prototype application? 
3. How can an ontology inference engine interface with the application? 
4. Is there a method of visually rendering the ontologies for greater usability, 

navigation and comprehension of domain knowledge? 

This thesis addressed these questions using a two-step methodology.  The first step was 

to research and make a case for the value of ontologies as a knowledge representation 

system that models the real world domain into classes, instances and the relationships 

between them.  A thorough review of RDF and OWL provided the mechanism for 

understanding OWL-DL semantics and how they can be used to define the components 

of an ontology.  It was necessary to fully comprehend the OWL constructs in order to 

overcome the common mistakes and pitfalls of ontology development.  As part of the 

ontology development process, a methodology for developing OWL-DL ontologies was 

proposed and demonstrated by the construction of a sample ontology in the geography 

domain. 

 The second step was to design, develop and test an ontology-based Web 

application, called OAKDA, to allow users to search the ontology library and traverse the 

ontology graph to discover domain knowledge for finding relevant Web search terms.  

When OAKDA was completed, an experiment was conducted to test whether the system 

could improve the precision of Web search compared to using standard Web portal 

searching sites.  
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B. EVALUATION 
 The first major milestone of this thesis was the development of the sample 

ontologies.  A significant effort was spent understanding the use of ontologies and 

learning RDF and OWL semantics.  This knowledge was instrumental in proposing a 

development methodology that enabled the construction of a valid geography domain 

ontology.  The final ontology was verified with Racer, an ontology inferencing engine, 

eliminating classification errors and inconsistencies.  The learned development methods 

were later used to create the ontologies used to conduct experiments to measure 

OAKDA’s performance in aiding Web search.  

 The second milestone was the overall design and execution of the OAKDA 

application.  Bringing OAKDA from conceptualization to implementation involved 

finding workable solutions for key data processing areas, namely Description Logics 

reasoning, ontology query, and an intuitive GUI visualization framework to facilitate 

human interaction with the application.  The selection of a multi-tier architecture 

contributed significantly to the success of the development effort.  It enabled an effective 

prototyping methodology used throughout the development cycle of the application.  It 

encouraged re-use of tier components as changes were made.  The choice of Racer 

middleware was well suited as a platform for reasoning and querying of OWL-DL 

ontologies.  Racer performed well as an ontology inferencing engine and provisioned an 

extensive language for query.  Racer’s reasoning service was capable of calculating 

implicit role relationships, reclassifying individuals based on their property restrictions, 

and correctly determined subsumption relationships between classes.  Implementing 

TouchGraph software for visualization and navigation for OAKDA’s GUI interface made 

an important contribution its usability from a user perspective.   

The outcome of experiments conducted to test search performance between 

groups of people using OAKDA compared with Google showed that ontology aided 

search can confer an advantage.  A performance comparison of OAKDA and Google 

showed a statistically significant and positive difference in the test group (OAKDA) 

results when performing certain research tasks.  While the results showed the overall 
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contextual accuracy of retrieved web pages between the test and control groups were not 

significantly different, the test group performed better in retrieving the specific target 

information requested by the research task.  Also, the participant survey showed that the 

test group rated OAKDA as more effective than Google.  This implies that OAKDA 

users received more confirmation, or had a greater level of confidence, that they 

discovered the data they were tasked to retrieve. 

It seems that OAKDA’s effectiveness in Web research depends upon two factors 

– “aboutness”27 and “availability” of the ontology information in its database.  First, the 

degree of the ontology's aboutness to the domain of interest determines the relevancy of 

the knowledge found in the ontology.  Terms with a high degree of aboutness do a better 

job of retrieving the body of information they reference.  Although measuring aboutness 

of retrieved OWL-DL data is not in the scope of this project, an ontology is meant to be 

definitional or descriptive of a domain and should be useful in aiding web search as long 

as the ontology is not misleading in its content.  Second, OAKDA relies on a 

presumption that an ontology exists in the users area of interest and that the ontology 

contains knowledge the researcher does not yet posses. 

 

C. LESSONS LEARNED 
 In completing this thesis, several lessons were learned.  The first was the 

realization that ontology development is a non trivial endeavor.  Developing an ontology 

requires domain expert knowledge in addition to a complete understanding of the 

ontology language syntax and semantics.  Although the level of domain knowledge 

required is contingent on the scope and level of detail of the ontology, having an in-depth 

knowledge of the domain concepts and their relationships allows the developer to 

accurately capture the semantics and relationships between classes.  Due to the inherent 

level of latitude in representing type/class hierarchy in concept modeling, no two subject-

matter experts (SMEs) will design an ontology of a given domain in an identical manner.  

Depending on the domain of context, there is usually a significant degree of subjectivity 
                                                 

27 Aboutness is broadly defined as a degree in which a set of returned resources is “about” a particular 
domain of interest.  For instance, “if a system determines that a document d is topically related (i.e. about) 
to query q, then the document is returned to the user.” (Bruza et al., 2000, 1) 
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in specifying class definitions and relationships, with no absolute superiority of one 

particular schema over another.  Also, inconsistencies are easily introduced when 

creating a class hierarchy of an ontology.  Development tools, such as Protégé and Racer, 

help mitigate these errors by providing services to verify the validity and consistency of 

the ontology.  By performing consistency checks on the ontology at various stages of its 

development, it was possible to find and correct classification errors or inconsistencies in 

class definitions. 

A second lesson was learned during the experiment conducted to measure the 

effectiveness of the OAKDA application.  The Swoogle28 project, funded by the 

University of Maryland, Baltimore, is a vast searchable repository of indexed OWL and 

RDF ontologies.  Swoogle uses automated Web crawling techniques similar to those 

employed by the major Web search portals to find available ontologies out on the Web.  

Swoogle differs from other search portals in that it only seeks RDF and OWL Web 

content.   Swoogle was searched extensively for OWL ontologies to be used for the 

experiment, but none found to suitable because of their structural attributes, content or 

both.  Instead, those ontologies had to be developed by the thesis authors.  It may be that 

in some circumstances, ontologies need to be structured in particular ways suited to how 

they are being used. 

 

D. FUTURE WORK 
Currently the OWL database in OAKDA is too limited to provide usability 

outside of the bounds of experiment.  In order for an application like OAKDA to have 

wide popularity as a research tool, there would need to be a repository of appropriately 

structured ontology files with an encyclopedic breadth.  This scenario is at this time not 

likely to come about.  OAKDA represents a departure from many other proposed uses of 

ontology data in that much previous work has been to try to leverage ontologies to 

enhance machine capabilities.  OAKDA seeks to enhance the research facility of the 

human user.  Future efforts that would be able to draw from the technologies exhibited in 

OAKDA might be graphical visualizations of ontologies geared to aid navigation to 
                                                 

28 http://swoogle.umbc.edu - The first three letters of Swoogle stand for Semantic Web Ontology 
while the rest of the name is meant to refer to a popular Web search portal.   
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related information recomposed as an ontology.  For example, suppose someone 

developed an ontology about a library catalog.  A web site of the library’s catalog could 

show a navigation graph depicting the kinds of relationships between related reference 

materials.  Another usage might be based on an ontology that describes the relationships 

between class files, function points, variables, etc in a grouping of programming code.  A 

visualization of this ontology could give a team of developers an easy way to navigate the 

structure of program and quickly learn its topology.  Because of the regularity of 

computer programming syntax, the ontology might be able to be regenerated from the 

code base as changes are made. 

 
E. CONCLUSIONS 

OAKDA was built as project to explore the methodologies for accessing and 

processing OWL-DL ontologies in a framework which attempts to leverage domain data 

to enhance Web search queries.  OAKDA successfully integrated several components 

capable of performing these operations.  OAKDA’s architecture demonstrates one of a 

few possible frameworks for attaining a Semantic Web enabled application.  OAKDA 

overcame challenges in implementing a system to perform both machine processing and 

human interaction with Semantic data.  OAKDA demonstrates the feasibility of these 

technologies and could serve as a baseline for other types of Semantic Web applications 

that require similar functionality.   

 The central assertion of Semantic Web is to provide a universal medium for the 

exchange of data where data can be shared and processed by automated tools as well as 

by people.  This thesis showed the value of ontologies as a system for human-processable 

knowledge representation.  Through applications like OAKDA, that employ OWL-DL 

ontologies for semantic processing, communities in every field of interest should be 

encouraged to capture their knowledge by developing ontologies.  It is our hope that the 

research conducted here may suggest future methodologies for the realm of applications 

leveraging knowledge representation techniques. 
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APPENDIX 

A. ACRONYM TABLE 

Acronym/Term Description 

API Application Programming Interface 

BOT Software Robot 

CSS Cascading Style Sheets 

DBMS Database Management System 

DL Description Logics 

GUI Graphical User Interface 

HTML Hypertext Markup Language 

HTTP Hypertext Transfer Protocol 

IP Internet Protocol 

JDBC Java™ Database Connectivity 

JRE Java™ Runtime Environment 

KB Knowledge Base 

OAKDA Ontology Aided Knowledge Discovery Application 

ODBC Open Database Connectivity 

OWL-DL Web Ontology Language- Description Logics 

SOAP Simple Object Access Protocol 

SQL Structure Query Language 

TCP/IP Transfer Control Protocol / Internet Protocol 

UDDI Universal Discovery Description Integration 

Wiki A website or similar online resource which allows users 

to add and edit content collectively 

WSDL Web Service Description Language 

XML eXtensible Markup Language 
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B. JAVA EXAMPLE CODE – “INTERFACING WITH THE RACER 
SERVER” 

 
Figure 1:  Java code used to execute commands for Racer to read OWL-DL file 
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Figure 2:  Java code used to execute commands for Racer to read OWL-DL file and 

perform various queries which retrieve data in Java typed language structures. 
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